



### Learning to Fuse Monocular and Multi-view Cues for Multi-frame Depth Estimation in Dynamic Scenes

Rui Li<sup>1</sup>, Dong Gong<sup>2</sup>, Wei Yin<sup>3</sup>, Hao Chen<sup>4</sup>, Yu Zhu<sup>1</sup>, Kaixuan Wang<sup>3</sup>, Xiaozhi Chen<sup>3</sup>, Jinqiu Sun<sup>1</sup>, Yanning Zhang<sup>1</sup>

<sup>1</sup>Northwestern Polytechnical University, <sup>2</sup>The University of New South Wales, <sup>3</sup>DJI, <sup>4</sup>Zhejiang University

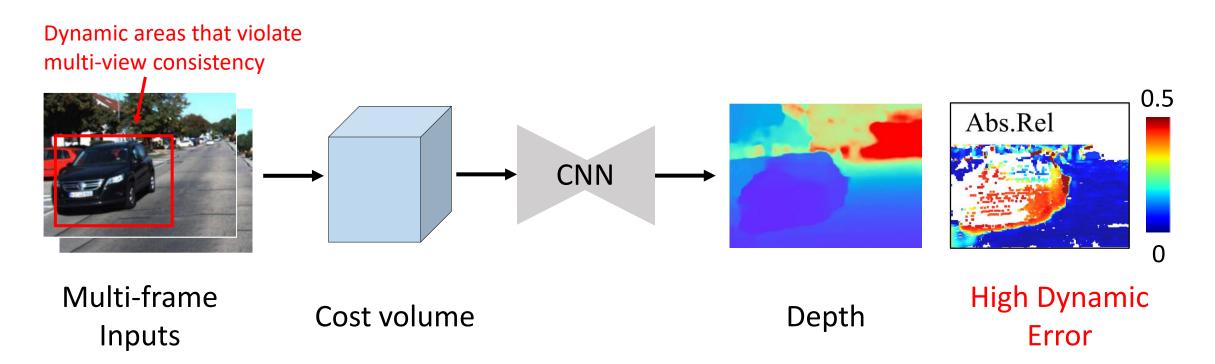
Project page: <u>https://ruili3.github.io/dymultidepth/index.html</u>

Github: <u>https://github.com/ruili3/dynamic-multiframe-depth</u>

THU-PM-089

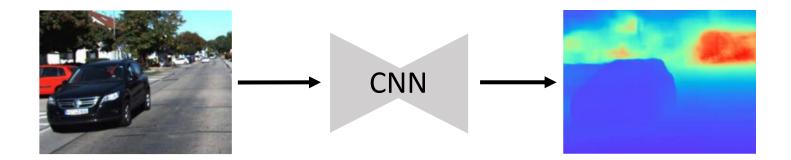
## Multi-frame depth estimation

Higher general accuracy by leveraging multi-view consistency



## Monocular depth estimation

Infer depth directly from a single image, not affected by dynamic issues.



## Previous works

*Segment* dynamic areas, and *supplement* the multi-frame cues with monocular cues.

Limitations:

- Uncontrolled segmentation quality;
- Additional segmentation computation;
- Dynamic performance limited by monocular depth.

[1] MonoRec: Semi-supervised dense reconstruction in dynamic environments from a single moving camera. CVPR 2021.

[2] The temporal opportunist: Self-supervised multi-frame monocular depth. CVPR 2021.

[3] Disentangling Object Motion and Occlusion for Unsupervised Multi-frame Monocular Depth. ECCV 2022.

## Our work

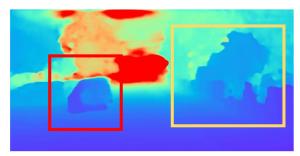
We propose a novel cross-cue fusion framework for dynamic depth estimation:

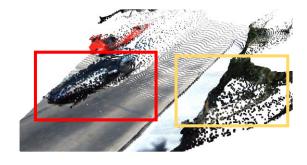
- Mask-free
- Obvious improvement on both cues (especially for mono. depth)

# Insights

Two depth cues can potentially *benefit* each other due to their respective benefits on static and dynamic areas.

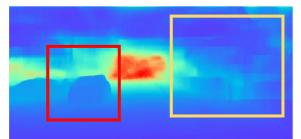
• Multi-frame depth





Static
Dynamic

Monocular depth



**Depth Map** 



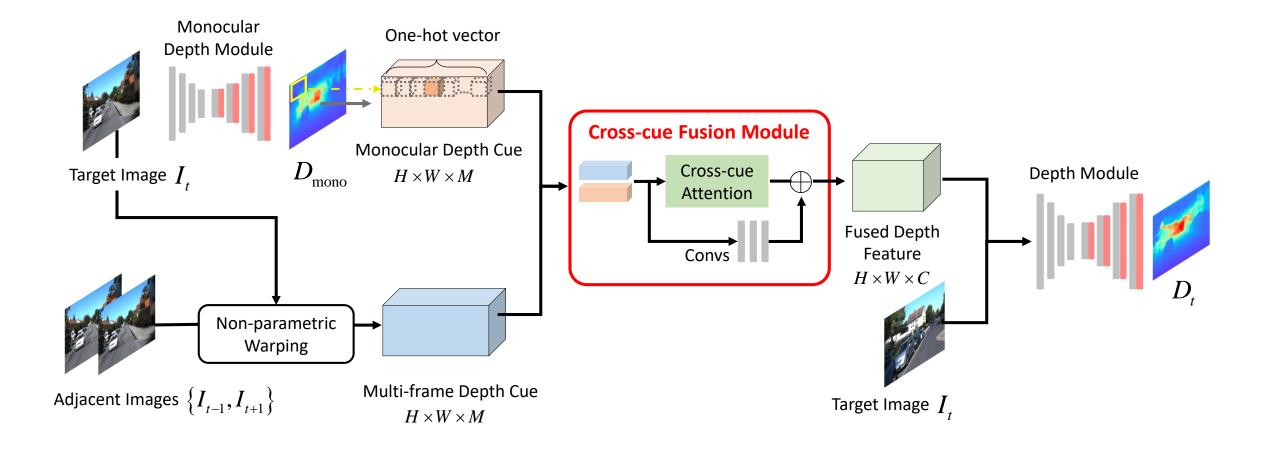
**Point Cloud** 

Static

• Dynamic

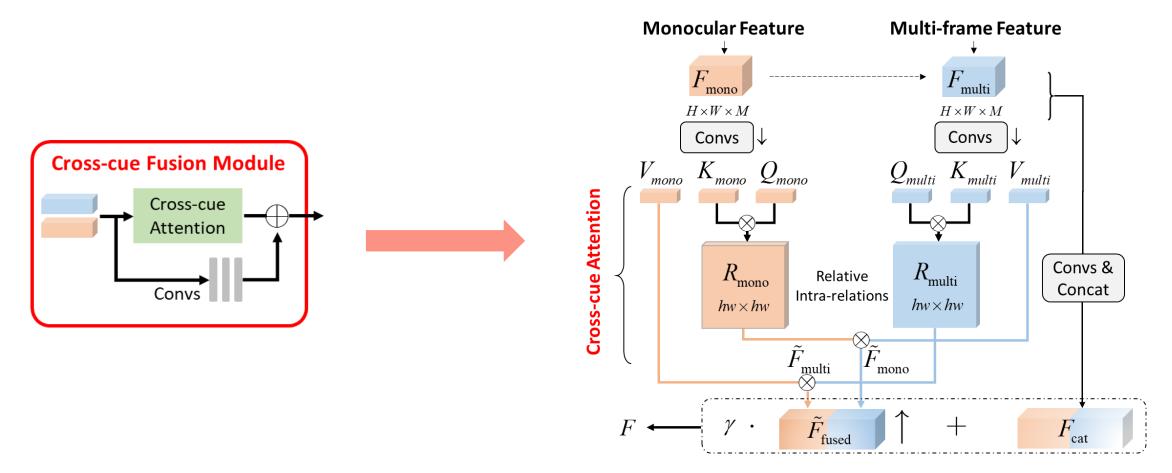


## Volume fusion with cross-cue attention



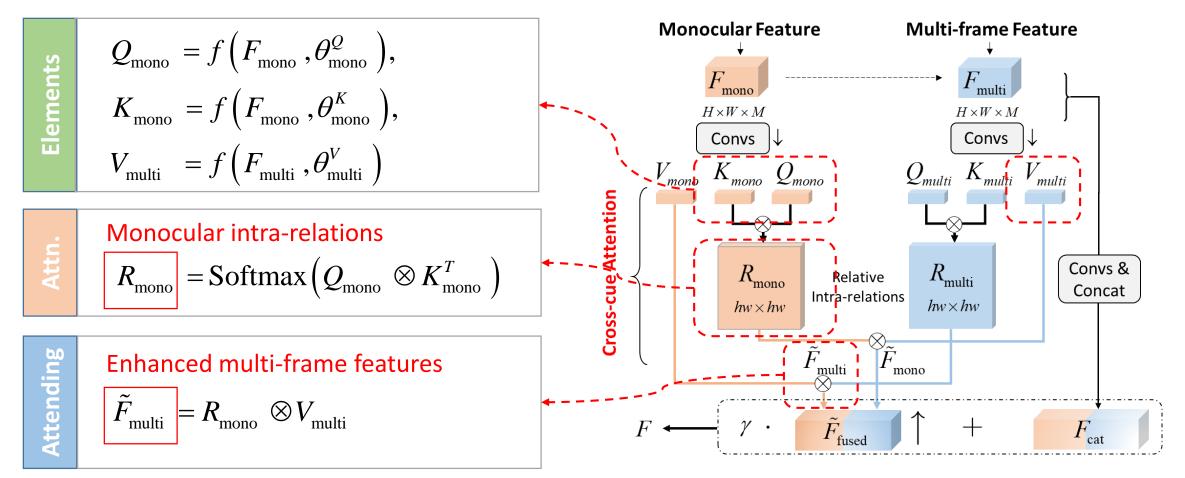
## The cross-cue module

Enhance one depth feature with the learned intra-relations from another.



## The cross-cue module

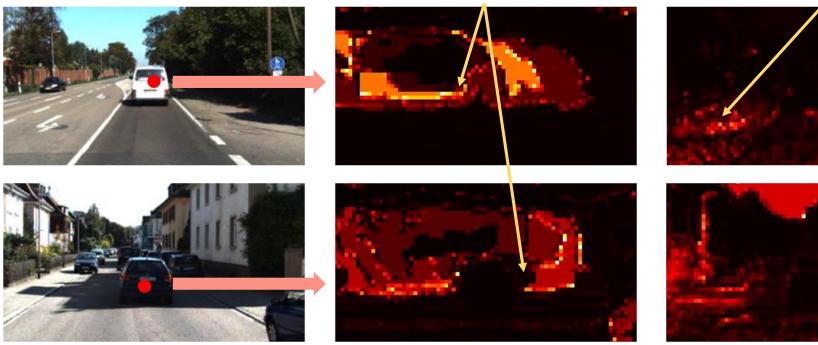
#### Taking multi-frame feature enhancement as an example:



## The cross-cue module

### The effectiveness of intra-relations from each depth cue:

High response around dynamic area



High response in static area

Input with dynamic point

Attn. map from monocular intra-relation  $R_{\text{mono}}$ 

Attn. map from multi-frame intra-relation  $R_{\text{multi}}$ 

### State-of-the-art overall & dynamic performance on KITTI

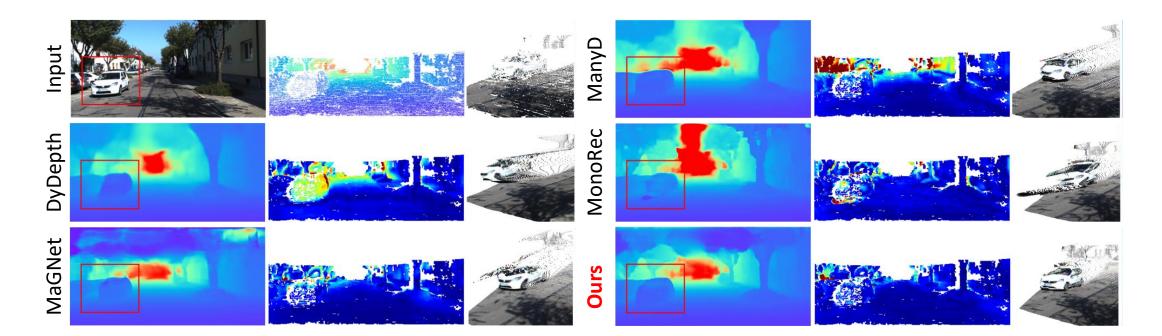
| Eval    | Method           | Back.   | Reso. | Sup.  | Abs Rel | Sq Rel | RMSE   | <b>RMSE</b> <sub>log</sub> | $\delta < 1.25$ | $\delta < 1.25^2$ | $\delta < 1.25^3$ |
|---------|------------------|---------|-------|-------|---------|--------|--------|----------------------------|-----------------|-------------------|-------------------|
|         | Manydepth [36]   | Res-18  | MR    | М     | 0.071   | 0.343  | 3.184  | 0.108                      | 0.945           | 0.991             | 0.998             |
| Overall | DynamicDepth [9] | Res-18  | MR    | Μ     | 0.068   | 0.296  | 3.067  | 0.106                      | 0.945           | 0.991             | 0.998             |
|         | MonoRec [37]     | Res-18  | MR    | $D^*$ | 0.050   | 0.290  | 2.266  | 0.082                      | 0.972           | 0.991             | 0.996             |
|         | Ours             | Res-18  | MR    | D     | 0.043   | 0.151  | 2.113  | 0.073                      | 0.975           | 0.996             | 0.999             |
| 0 vé    | MaGNet [1]       | Effi-B5 | MR    | D     | 0.057   | 0.215  | 2.597  | 0.088                      | 0.967           | 0.996             | 0.999             |
|         | Ours             | Effi-B5 | MR    | D     | 0.046   | 0.155  | 2.112  | 0.076                      | 0.973           | 0.996             | 0.999             |
|         | MaGNet [1]       | Effi-B5 | HR    | D     | 0.043   | 0.135  | 2.047  | 0.082                      | 0.981           | 0.997             | 0.999             |
|         | Ours             | Effi-B5 | HR    | D     | 0.039   | 0.103  | 1.718  | 0.067                      | 0.981           | 0.997             | 0.999             |
|         | Manydepth [36]   | Res-18  | MR    | Μ     | 0.222   | 3.390  | 7.921  | 0.237                      | 0.676           | 0.902             | 0.964             |
|         | DynamicDepth [9] | Res-18  | MR    | Μ     | 0.208   | 2.757  | 7.362  | 0.227                      | 0.682           | 0.911             | 0.971             |
| ပ       | MonoRec [37]     | Res-18  | MR    | $D^*$ | 0.360   | 9.083  | 10.963 | 0.346                      | 0.590           | 0.882             | 0.780             |
| Dynamic | Ours             | Res-18  | MR    | D     | 0.118   | 0.835  | 4.297  | 0.146                      | 0.871           | 0.975             | 0.990             |
| Jyn     | MaGNet [1]       | Effi-B5 | MR    | D     | 0.141   | 1.219  | 4.877  | 0.168                      | 0.830           | 0.955             | 0.986             |
| -       | Ours             | Effi-B5 | MR    | D     | 0.111   | 0.768  | 4.117  | 0.135                      | 0.881           | 0.980             | 0.994             |
|         | MaGNet [1]       | Effi-B5 | HR    | D     | 0.140   | 1.060  | 4.581  | 0.202                      | 0.834           | 0.954             | 0.982             |
|         | Ours             | Effi-B5 | HR    | D     | 0.112   | 0.830  | 4.101  | 0.137                      | 0.885           | 0.978             | 0.992             |

Self-supervised

Weakly-supervised

Supervised

#### Visualization of predicted depth map, error map and point cloud



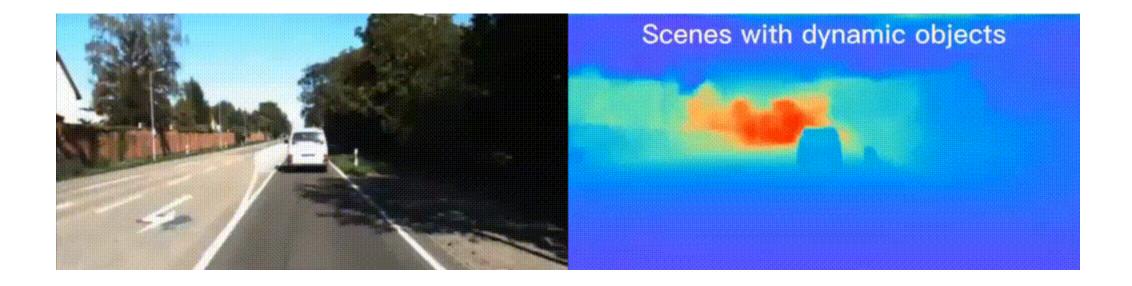
### Good generalization results on DDAD

| Eval    | Method       | Backbone | Abs Rel      | Sq Rel       | RMSE          | RMSE <sub>log</sub> | $\delta < 1.25$ | $\delta < 1.25^2$ | $\delta < 1.25^3$ |
|---------|--------------|----------|--------------|--------------|---------------|---------------------|-----------------|-------------------|-------------------|
| Overall | MonoRec [37] | Res-18   | 0.158        | 3.102        | 7.553         | 0.227               | 0.854           | 0.931             | 0.961             |
|         | MaGNet [1]   | Effi-B5  | 0.208        | <u>2.641</u> | 10.739        | 0.382               | 0.620           | 0.878             | 0.942             |
|         | Ours         | Res-18   | 0.158        | 2.416        | <u>9.855</u>  | 0.299               | <u>0.747</u>    | <u>0.894</u>      | <u>0.947</u>      |
| Dynamic | MonoRec [37] | Res-18   | 0.544        | 16.703       | 16.116        | 0.482               | 0.460           | 0.667             | 0.798             |
|         | MaGNet [1]   | Effi-B5  | <u>0.266</u> | <u>3.982</u> | <u>11.715</u> | <u>0.398</u>        | <u>0.462</u>    | <u>0.815</u>      | <u>0.917</u>      |
|         | Ours         | Res-18   | 0.234        | 3.611        | 11.007        | 0.331               | 0.576           | 0.835             | 0.921             |

Dynamic depth error reduction over the monocular depth branch.

| Method               | Mono. Err. | Final Err. | Err. Redu. |  |
|----------------------|------------|------------|------------|--|
| Manydepth [36]       | 0.212      | 0.222      | -4.72%     |  |
| Dynamicdepth [9]     | 0.214      | 0.208      | 2.83%      |  |
| MaGNet [1]           | 0.153      | 0.141      | 7.84%      |  |
| <b>Ours</b> - Res.18 | 0.149      | 0.118      | 20.81%     |  |
| <b>Ours</b> - Res.50 | 0.145      | 0.116      | 20.00%     |  |
|                      |            |            |            |  |

## Thank you!



Project page: <u>https://ruili3.github.io/dymultidepth/index.html</u> Github: <u>https://github.com/ruili3/dynamic-multiframe-depth</u>