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Overview
We focus on learning class representations that can well 
correlate pixel features for accurate dense object localization.

Ø We propose to explicitly construct multi-modal class 
representations in a unified transformer framework.

Ø We propose to learn class-specific visual and textual tokens 
by leveraging the pre-trained CLIP model

Ø We propose to enhance the multi-modal class-specific tokens 
by incorporating sample-specific context

Ø The proposed WSDOL results lead to SoTA WSSS results on 
PASCAL VOC and MS COCO.



Weakly Supervised Dense Object Localization

CAM mechanism: 

𝑨!" = ∑#$%& 𝒘"
#𝑭!#, 

i.e., the correlation between class-specific weights of the image classifier (𝒘") 
and pixel-level features (𝑭!)



The class-specific weights are class representations, which are

Ø image classification representations, with a limited ability to 
address intra-class variations; 

Ø global dataset-level representations, not adaptive to capture 
sample-specific features;

resulting in inaccurate class-to-pixel correlation.

Limitations:  

Goal: To learn more discriminative and sample-adaptive class representations for dense object localization.



Contrastive Language-Image Pretraining (CLIP)

It provides a novel way to learn visual concepts through natural language supervisions.



The proposed framework



Multi-modal class-specific token learning

• Class-specific textual tokens: 
𝑇'(' = 𝑇'('!) + 𝜆% ) 𝑇'('*+'

𝑇!"!#$ : global class-specific textual tokens, initialized by the pre-trained CLIP label text embeddings.

𝑇!"!%&!: local class-specific textual tokens,  refined by sample-specific visual context.

• Class-specific visual tokens: 

𝑇",- = 𝑇",-!) + 𝜆. ) 𝑇",-*+'

𝑇'()#$ : global class-specific visual tokens, initialized by the pre-trained DINO class visual embedding.

𝑇'()%&!: local class-specific visual tokens, refined by sample-specific visual context.



Image-language context transfer

𝐒 ∈ ℝ!×! is the similarity matrix, 𝐈 ∈ ℝ!×! is an identity matrix, B is the batch size.  

Output text tokens

CLIP image embeddings

The benefit is two-fold:

• Transferring rich image-related language
context from CLIP to the output text tokens

• Batch contrastive loss enhances the
discriminative ability of the output text
tokens across samples



Training objectives
Text-to-patch correlation maps:
𝐂"#$ = 𝑡𝑜𝑟𝑐ℎ.𝑚𝑎𝑡𝑚𝑢𝑙(𝐓"%" , 𝐓$&")

𝐲"#$ = 𝐺(𝐂"#$)
𝐓!"! ∈ ℝ*×,, 𝐓-.! ∈ ℝ,×/0, 𝑪!1- ∈ ℝ*×/0

Class-to-patch correlation maps:
𝐂+#$ = 𝑡𝑜𝑟𝑐ℎ.𝑚𝑎𝑡𝑚𝑢𝑙(𝐓+,- , 𝐓$&")

𝐲+#$ = 𝐺(𝐂+#$)
𝐓'() ∈ ℝ*×,, 𝐓-.! ∈ ℝ,×/0, 𝑪'1- ∈ ℝ*×/0

Global Weighted Ranking Pooling:
For a class c, 
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C is the correlation map; d is a decay parameter.

ℒ"6"&, = ℒ7897+,-3"6:;< + ℒ7897
"#$ + ℒ7897

+#$ + ℒ+6<"4&-"
MLSM: multi-label soft margin loss.



Class-specific dense localization inference



Global-local multi-modal class-specific tokens

Class representations mIoU

Global class-specific visual tokens 62.7

Global multi-modal class-specific tokens 64.1

Local multi-modal class-specific tokens 63.3

Global-local multi-modal class-specific tokens 66.3

Evaluation of the generated dense object localization on the train set of PASCAL VOC



Image-language context transfer
Evaluation of the generated dense object localization on the train set of PASCAL VOC



Comparison with SoTA WSDOL methods

Multi-label dense localization Single-label dense localization (OpenImages)



Comparison with SoTA WSSS methods

Method Backbone DeepLab 
version Supervision

VOC MS COCO
Val Test Val

AuxSegNet (ICCV21) ResNet38 V1 I+S 69.0 68.6 33.9
L2G (CVPR22) ResNet38 V1 I+S 72.0 73.0 44.2
Kweon et al. (ICCV21) ResNet38 V1 I 68.4 68.2 36.4
CDA (ICCV21) ResNet38 V1 I 66.1 66.8 33.2
MCTformer (CVPR22) ResNet38 V1 I 71.9 71.6 42.0
SIPE (CVPR 22) ResNet38 V1 I 68.2 69.7 43.6
Yoon et al. (ECCV22) ResNet38 V1 I 70.9 71.7 44.8
CLIMS (CVPR22) ResNet101 V2 I+L 69.3 68.7 -
Ours ResNet38 V1 I+L 72.2 72.2 45.9



Qualitative results on PASCAL VOC

MCTformer: Multi-class token transformer for weakly supervised semantic segmentation, CVPR 2022.



Qualitative results on MS COCO

MCTformer: Multi-class token transformer for weakly supervised semantic segmentation, CVPR 2022.



Qualitative results on OpenImages


