

Learning Multi-Modal Class-Specific Tokens for Weakly Supervised Dense Object Localization

Lian Xu¹, Wanli Ouyang², Mohammed Bennamoun¹, Farid Boussaid¹, Dan Xu³

Poster: THU-AM-296

¹The University of Western Australia, ²Shanghai AI Laboratory ³Hong Kong University of Science and Technology

THE UNIVERSITY OF Western Australia

Overview

We focus on learning class representations that can well correlate pixel features for accurate dense object localization.

- We propose to explicitly construct multi-modal class representations in a unified transformer framework.
- We propose to learn class-specific visual and textual tokens by leveraging the pre-trained CLIP model
- We propose to enhance the multi-modal class-specific tokens by incorporating sample-specific context
- The proposed WSDOL results lead to SoTA WSSS results on PASCAL VOC and MS COCO.

Weakly Supervised Dense Object Localization

CAM mechanism:

$$A_i^c = \sum_{k=1}^K \boldsymbol{w}_c^k \boldsymbol{F}_i^k,$$

i.e., the correlation between class-specific weights of the image classifier (w_c) and pixel-level features (F_i)

Limitations:

The class-specific weights are class representations, which are

- image classification representations, with a limited ability to address intra-class variations;
- global dataset-level representations, not adaptive to capture sample-specific features;

resulting in inaccurate class-to-pixel correlation.

Goal: To learn more discriminative and sample-adaptive class representations for dense object localization.

Contrastive Language-Image Pretraining (CLIP)

2. Create dataset classifier from label text

It provides a novel way to learn visual concepts through natural language supervisions.

The proposed framework

Multi-modal class-specific token learning

• Class-specific **textual** tokens:

$$T_{txt} = T_{txt}^{in} + \lambda_1 \cdot T_{txt}^{out}$$

 T_{txt}^{in} : global class-specific textual tokens, initialized by the pre-trained CLIP label text embeddings. T_{txt}^{out} : local class-specific textual tokens, refined by sample-specific visual context.

• Class-specific **visual** tokens:

$$T_{cls} = T_{cls}^{in} + \lambda_2 \cdot T_{cls}^{out}$$

 T_{cls}^{in} : global class-specific visual tokens, initialized by the pre-trained DINO class visual embedding. T_{cls}^{out} : local class-specific visual tokens, refined by sample-specific visual context.

Image-language context transfer

The benefit is two-fold:

- Transferring rich image-related language context from CLIP to the output text tokens
- Batch contrastive loss enhances the discriminative ability of the output text tokens across samples

 $\mathbf{S} \in \mathbb{R}^{B \times B}$ is the similarity matrix, $\mathbf{I} \in \mathbb{R}^{B \times B}$ is an identity matrix, B is the batch size.

Training objectives

Text-to-patch correlation maps: Global Weighted Ranking Pooling:

$$\begin{split} \mathbf{C}_{t2p} &= torch.matmul(\mathbf{T}_{txt},\mathbf{T}_{pat}) & \text{For a class c,} \\ \mathbf{y}_{t2p} &= G(\mathbf{C}_{t2p}) \\ \mathbf{T}_{txt} \in \mathbb{R}^{C \times D}, \mathbf{T}_{pat} \in \mathbb{R}^{D \times HW}, \mathbf{C}_{t2p} \in \mathbb{R}^{C \times HW} & G_{c}(\mathbf{C}) = 0 \end{split}$$

Class-to-patch correlation maps:

$$\begin{split} \mathbf{C}_{c2p} &= torch.matmul(\mathbf{T}_{cls},\mathbf{T}_{pat})\\ \mathbf{y}_{c2p} &= G(\mathbf{C}_{c2p})\\ \mathbf{T}_{cls} \in \mathbb{R}^{C \times D}, \mathbf{T}_{pat} \in \mathbb{R}^{D \times HW}, \mathbf{C}_{c2p} \in \mathbb{R}^{C \times HW} \end{split}$$

$$G_{c}(\mathbf{C}) = \frac{1}{Z(d)} \sum_{j=1}^{HW} d^{j-1} \mathbf{C}^{r_{j},c}$$
$$\mathbf{C}^{r_{1},c} > \mathbf{C}^{r_{2},c} > \cdots > \mathbf{C}^{r_{HW},c}$$
$$\sum^{HW} u^{j-1}$$

$$Z(d) = \sum_{j=1}^{m} d^{j-1}$$

C is the correlation map; d is a decay parameter.

$$\mathcal{L}_{total} = \mathcal{L}_{MLSM}^{cls-token} + \mathcal{L}_{MLSM}^{t2p} + \mathcal{L}_{MLSM}^{c2p} + \mathcal{L}_{contrast}$$

MLSM: multi-label soft margin loss.

Class-specific dense localization inference

Global-local multi-modal class-specific tokens

Evaluation of the generated dense object localization on the train set of PASCAL VOC

Class representations	mloU
Global class-specific visual tokens	62.7
Global multi-modal class-specific tokens	64.1
Local multi-modal class-specific tokens	63.3
Global-local multi-modal class-specific tokens	66.3

Image-language context transfer

Evaluation of the generated dense object localization on the train set of PASCAL VOC

Visual	Image-language context		
context	Prior knowledge	Regularization loss	moe
×	-	-	64.1
\checkmark	-	-	64.8
\checkmark	CLIP caption embed.	L1	63.7
\checkmark	CLIP caption embed.	Batch-contrast CE	65.1
\checkmark	CLIP image embed.	Batch-contrast CE	66.3

Comparison with SoTA WSDOL methods

Multi-label dense localization

Method	Cls. Backbone	VOC	COCO	Met
CAM (CVPR16) [48]	ResNet50	48.8	33.5 [†]	CAN
SEAM (CVPR20) [34]	ResNet38	55.4	25.1 [‡]	HAS
RIB (NeurIPS21) [18]	ResNet50	56.5	36.5	ACc
AdvCAM (CVPR21) [19]	ResNet38	55.6	37.2	SPG
CLIMS (CVPR22) [37]	ResNet50	56.6	-	ADI
SIPE (CVPR22) [4]	ResNet50	58.6	-	Cutl
W-OoD (CVPR22) [21]	ResNet50	59.1	-	PAS
Du et al. (CVPR22) [8]	ResNet38	61.5	-	IVR
TS-CAM (ICCV21) [10]	ViT-small	41.3	-	Zhu
MCTformer (CVPR22) [40]	ViT-small	61.7	-	CRE
MCTformer (CVPR22) [40]	ViT-base	62.3*	-	Zhu
Ours	ViT-base	66.3	40.9	Ours

Single-label dense localization (OpenImages)

Method	Cls. backbone	pIoU	PxAP
CAM (CVPR16) [48]	ResNet50	43.0	58.2
HAS (ICCV17) [31]	ResNet50	41.9	55.1
ACoL (CVPR18) [47]	ResNet50	41.7	56.4
SPG (ECCV18) [46]	ResNet50	41.8	55.8
ADL (CVPR19) [6]	ResNet50	42.1	55.0
CutMix (ICCV19) [43]	ResNet50	42.7	57.6
PAS (ECCV20) [2]	ResNet50	-	60.9
IVR (ICCV21) [15]	ResNet50	-	58.9
Zhu et al. (CVPR22) [52]	ResNet50	49.7	65.4
CREAM (CVPR22) [38]	ResNet50	-	64.7
Zhu et al. (ECCV22) [51]	ResNet50	52.2	67.7
Ours	ViT-base	57.6	73.3

Comparison with SoTA WSSS methods

	Backbone	DeepLab version	Supervision	VOC		MS COCO
wiethod				Val	Test	Val
AuxSegNet (ICCV21)	ResNet38	V1	I+S	69.0	68.6	33.9
L2G (CVPR22)	ResNet38	V1	I+S	72.0	73.0	44.2
Kweon et al. (ICCV21)	ResNet38	V1	I	68.4	68.2	36.4
CDA (ICCV21)	ResNet38	V1	I	66.1	66.8	33.2
MCTformer (CVPR22)	ResNet38	V1	l	71.9	71.6	42.0
SIPE (CVPR 22)	ResNet38	V1	l	68.2	69.7	43.6
Yoon et al. (ECCV22)	ResNet38	V1	I	70.9	71.7	44.8
CLIMS (CVPR22)	ResNet101	V2	l+L	69.3	68.7	-
Ours	ResNet38	V1	l+L	72.2	72.2	45.9

Qualitative results on PASCAL VOC

MCTformer: Multi-class token transformer for weakly supervised semantic segmentation, CVPR 2022.

Qualitative results on MS COCO

MCTformer: Multi-class token transformer for weakly supervised semantic segmentation, CVPR 2022.

Qualitative results on OpenImages

