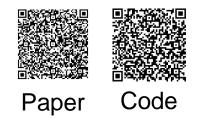


LINe: Out-of-Distribution Detection by Leveraging Important Neurons

Yong Hyun Ahn¹, Gyeong-Moon Park^{2,*}, Seong Tae Kim^{2,*} ¹Department of Artificial Intelligence, Kyung Hee University ²Department of Computer Science and Engineering, Kyung Hee University



THU-AM-320

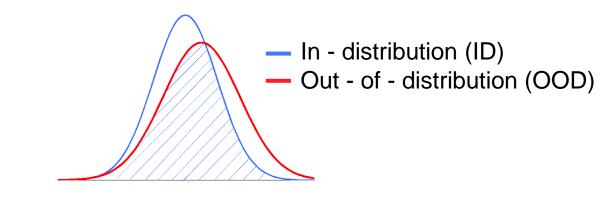
Overview

Out-of-Distribution (OOD) detection:

Goal : Identify the input is **In-Distribution (ID)** or **Out-of-Distribution (OOD)**

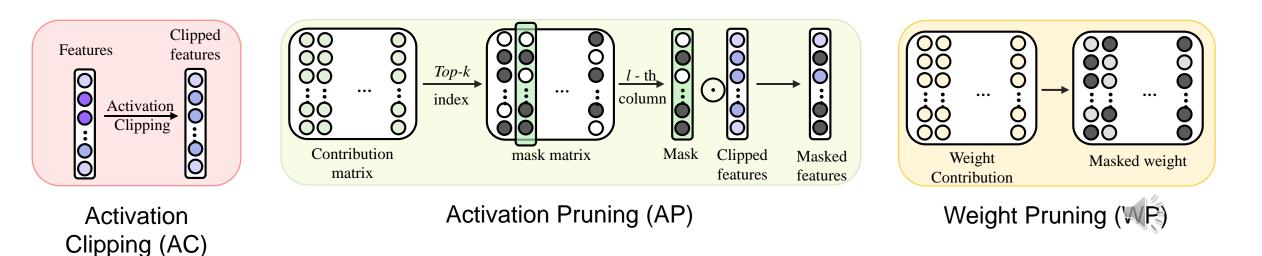
Recent Out-of-Distribution (OOD) detection methods deals with:

"How to reduce noisy outputs"



<Overlap between ID and OOD>

- LINe reduce noisy outputs by using two simple techniques
- LINe selectively uses class-wise important neurons.
- LINe is a simple yet effective method for OOD detection.



LINe achieves SoTA performance on various OOD detection tasks

Method	ImageNet-1k		CIFA	AR-10	CIFAR-100	
Methoa	FPR95 \downarrow	AUROC \uparrow	FPR95 ↓	AUROC \uparrow	FPR95 ↓	AUROC \uparrow
MSP	66.95	81.99	48.73	92.46	80.13	74.36
ODIN	56.48	85.41	24.57	93.71	58.14	84.49
Mahalanobis	87.43	55.47	31.42	89.15	55.37	82.73
Energy	58.41	86.17	26.55	94.57	68.45	81.19
ReAct	31.43	92.95	26.45	94.95	62.27	84.47
DICE	34.75	90.77	20.83	95.24	49.72	87.23
DICE + ReAct	27.25	93.40	16.48	96.64	49.57	85.08
LINe (Ours)	20.70	95.03	14.71	96.99	35.67	88.67

Introduction

Motivation

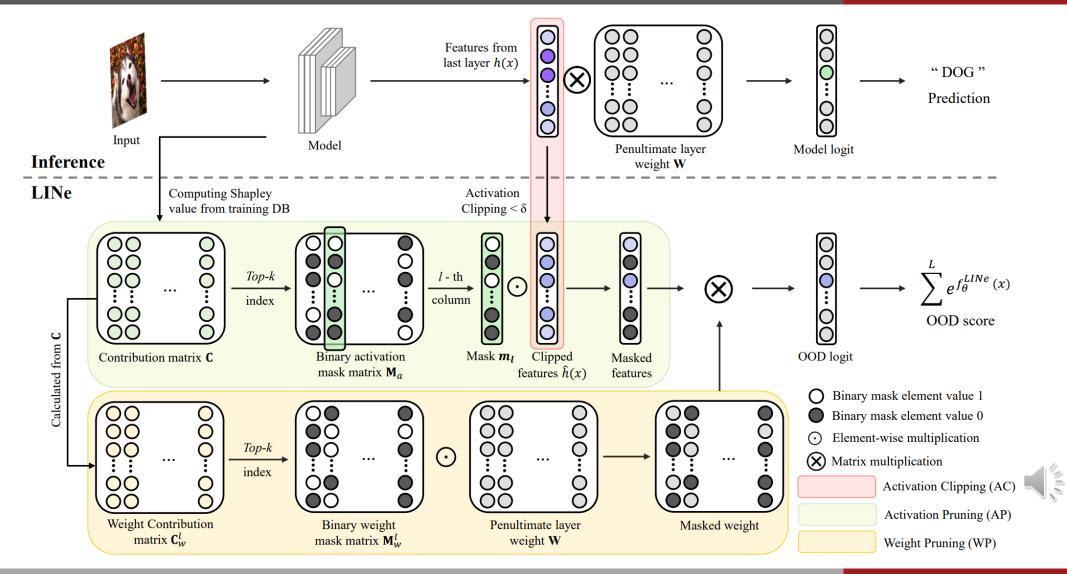
Current Challenges:

How to reduce noisy output?

Our key Insights:

- Neurons with high Shapley value represents <u>essential concept</u> of input.
- Class-wise average of Shapley value allow us to calculate contribution for each class.
- LINe selectively use important neurons only to reduce noisy outputs.

Method Overview

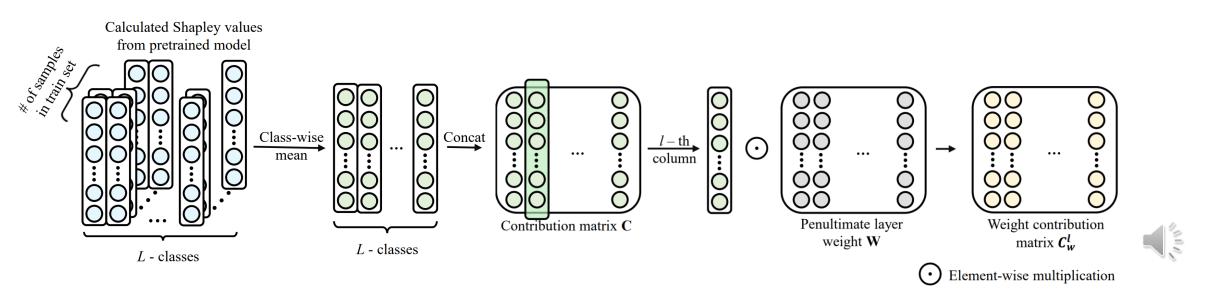


8

Augmented Intelligence Lab

Step 0: Prepare Class-wise Contribution of each neuron and weight

- Calculate class-wise contribution(i.e., Shapley value) from training data
- → We use Taylor approximation of Shapley value introduced in Khakzar et al. [1]
 - Contribution matrix C, C_w construction using Shapley value

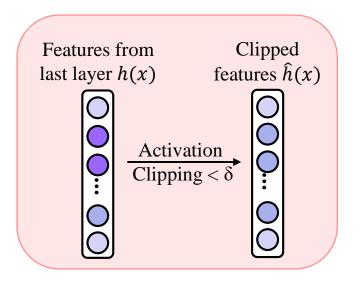


[1] Khakzar, Ashkan, et al. "Neural response interpretation through the lens of critical pathways." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

Augmented Intelligence Lab

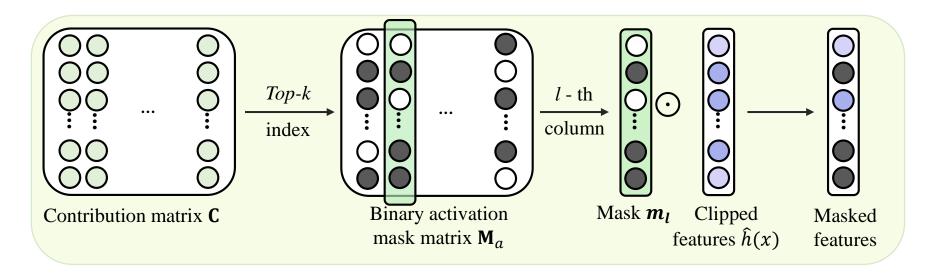
Step 1: Activation Clipping (AC)

- Rectify sample penultimate layer activation below certain threshold (δ)
- Number of important neuron activation can be considered by AC
 - Apply Activation Clipping in last layer activation



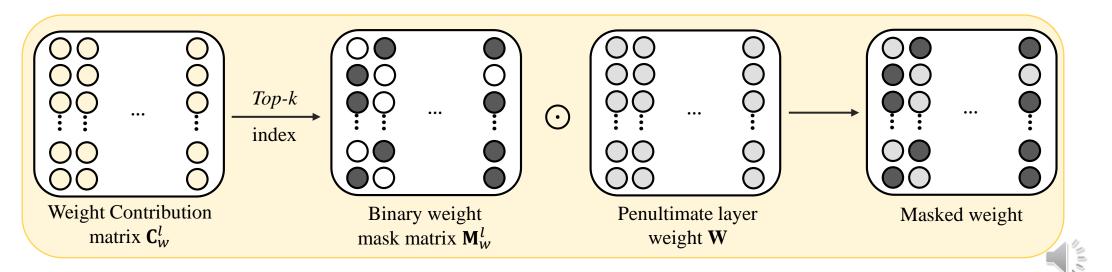
Step 2: Activation Pruning (AP)

- Apply binary activation mask of predicted class to clipped feature.
- Reduce signals from less import neurons.
 - Apply Activation Pruning to clipped feature



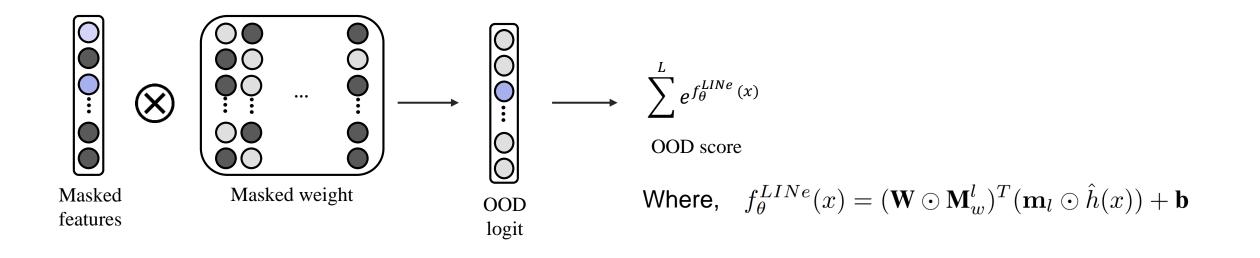
Step 3: Weight Pruning (WP)

- Apply binary weight mask of predicted class to last layer weight.
- Reduce signals from less import weights.
 - Apply Weight Pruning to last layer weight



Step 4: Calculate OOD score

Multiply masked activation and weight, use Energy^[2] to calculate OOD score



1. Experiment on ImageNet-1k benchmarks

→ LINe outperform all the other baselines.

	OOD Datasets						Avonogo			
Method	iNaturalist		SUN		Places		Textures		Average	
	FPR95 \downarrow	AUROC \uparrow	FPR95 \downarrow	AUROC \uparrow	$FPR95\downarrow$	AUROC \uparrow	FPR95 \downarrow	AUROC \uparrow	FPR95 \downarrow	AUROC ↑
MSP (ICLR 17')	54.99	87.74	70.83	80.86	73.99	79.76	68.00	79.61	66.95	81.99
ODIN (ICLR 18')	47.66	89.66	60.15	84.59	67.89	81.78	50.23	85.62	56.48	85.41
Mahalanobis (NeurIPS 18')	97.00	52.65	98.50	42.41	98.40	41.79	55.80	85.01	87.43	55.47
Energy (NeurIPS 20')	55.72	89.95	59.26	85.89	64.92	82.86	53.72	85.99	58.41	86.17
ReAct (NeurIPS 21')	20.38	96.22	24.20	94.20	33.85	91.58	47.30	89.80	31.43	92.95
DICE (ECCV 22')	25.63	94.49	35.15	90.83	46.49	87.48	31.72	90.30	34.75	90.77
DICE + ReAct (ECCV 22')	18.64	96.24	25.45	93.94	36.86	90.67	28.07	92.74	27.25	93.40
LINe (Ours)	12.26	97.56	19.48	95.26	28.52	92.85	22.54	94.44	20.70	95.03

2. Experiment on CIFAR benchmarks

→ LINe outperform all the other baselines.

Method	CIF	AR-10	CIFAR-100		
Method	FPR95 ↓	AUROC \uparrow	FPR95 ↓	AUROC \uparrow	
MSP (ICLR 17')	48.73	92.46	80.13	74.36	
ODIN (ICLR 18')	24.57	93.71	58.14	84.49	
Mahalanobis (NeurIPS 18')	31.42	89.15	55.37	82.73	
Energy (NeurIPS 20')	26.55	94.57	68.45	81.19	
ReAct (NeurIPS 21')	26.45	94.95	62.27	84.47	
DICE (ECCV 22')	20.83	95.24	49.72	87.23	
DICE + ReAct (ECCV 22')	16.48	96.64	49.57	85.08	
LINe (Ours)	14.71	96.99	35.67	88.67	

3. Ablation study

• Effectiveness of each part (AP, WP, AC)

Method	AC	AP	WP	FPR95↓	AUROC↑
Energy [32]				58.41	86.17
Energy + AC	\checkmark			35.40	91.86
LINe w/o WP	\checkmark	\checkmark		26.88	93.77
LINe w/o AP	\checkmark		\checkmark	23.19	94.57
LINe (Ours)	\checkmark	\checkmark	\checkmark	20.70	95.03

Threshold (δ)	FPR95 ↓	AUROC \uparrow
$\delta = 0.1$	41.18	88.44
$\delta = 0.4$	23.43	94.79
$\delta = 0.8$	20.70	95.03
$\delta = 1.0$	21.69	94.81
$\delta = 1.5$	26.96	93.99
$\delta = 2.0$	31.88	92.97
$\delta = \infty$ (no AC)	44.88	89.14

Effect of different thresholds (δ) of AC

٠

4. Discussion

- How to select pruning percentile? (p_a, p_w)
- Different percentile due to different degree of overparameterization of models.

Table 8. Percentage of class-specific neuron overlap in multiple classes. Difference between the percentage of class-specific neuron overlap in multiple classes on three data sets. For each dataset, we calculated the proportion of very important (top 10%) neurons in more than o% of the class. All values are percentages.

Overlap	CIFAR-10	CIFAR-100	ImageNet
<i>o</i> = 20	24.56	26.90	1.70
<i>o</i> = 30	23.39	0.58	0.15

Acknowledgements. This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) grant funded by the Korea Government (MSIT)(No. 2022-0-00078: Explainable Logical Reasoning for Medical Knowledge Generation, No. 2021-0-02068: Artificial Intelligence Innovation Hub, No. RS-2022-00155911: Artificial Intelligence Convergence Innovation Human Resources Development (Kyung Hee University)) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (No. 2021R1G1A1094990).