

A New Comprehensive Benchmark for Semi-supervised Video Anomaly Detection and Anticipation

Congqi Cao, Yue Lu, Peng Wang, Yanning Zhang

ASGO, School of Computer Science, Northwestern Polytechnical University, China

Project Page: https://campusvad.github.io/

Paper Tag: THU-AM-372

Quick Overview

43

multiple

1

NWPU Campus Dataset

1,082,014

1,466,073

(ours)

384,059

28

Examples of the proposed dataset:

```
Comparison with other datasets:
```

NWPU Campus

Forward-backward Scene-conditioned Auto-encoder

Background

Video Anomaly Detection (VAD)

(From the ShanghaiTech dataset)

Training set: only contains normal events Testing set: contain both normal and abnormal events

Video:

Motivation

Widely Used VAD Datasets

NWPU Campus Dataset

Frame count and duration of the NWPU Campus dataset.

NWPU Campus (25 FPS)						
1,466,073 (16.29h)						
Training frames	Testing frames					
1,082,014 (12.02h)	384,059 (4.27h)					
Normal	Normal Abnorma					
1,082,014 (12.02h)	014 (12.02h) 318,793(3.54h) 65,266(0.73h)					

The distributions of training and testing videos (a) and abnormal testing videos (b).

The list of anomaly classes. "s.d." stands for the scene-dependent anomaly.

Climbing fence	Car crossing square	Cycling on footpath (s.d.)	Kicking trash can	
Jaywalking	Snatching bag	Crossing lawn	Wrong turn (s.d.)	
Cycling on square	Chasing	Loitering	Scuffle	
Littering	Forgetting backpack	U-turn	Battering	
Driving on wrong side	Falling	Suddenly stopping cycling in the middle of the road	Group conflict	
Climbing tree	Stealing	Illegal parking	Trucks (s.d.)	
Protest	Playing with water	Photographing in restricted area (s.d.)	Dogs	

Several samples from the proposed NWPU Campus dataset.

Stealing

Protest

Stealing

Group conflict

Dogs

Driving (turning left, normal) Wrong turn (turning left, abnormal)

Photographing in restricted area

Snatching bag

Car crossing square

5

NWPU Campus Dataset

Dataset	Year	# Frames		# Abnormal	Resolution	#Scenes	Scene	
		Total	Training	Testing	event classes	Ite solution		dependency
Subway Entrance [25]	2008	86,535	18,000	68,535	5	512×384	1	X
Subway Exit [25]	2008	38,940	4,500	34,440	3	512×384	1	×
UMN [26]	2009	7,741	-	-	3	320×240	3	×
USCD Ped1 [22]	2010	14,000	6,800	7,200	5	238×158	1	×
USCD Ped2 [22]	2010	4,560	2,550	2,010	5	360×240	1	×
CUHK Avenue [27]	2013	30,652	15,328	15,324	5	640×360	1	×
ShanghaiTech [23]	2017	317,398	274,515	42,883	11	856×480	13	×
Street Scene [28]	2020	203,257	56,847	146,410	17	1280×720	1	×
IITB Corridor [29]	2020	483,566	301,999	181,567	10	1920×1080	1	×
UBnormal [24] *	2022	236,902	116,087	92,640	22	720p	29	×
NWPU Campus	(ours)	1,466,073	1,082,014	384,059	28	multiple	43	\checkmark

Comparison with the existing semi-supervised VAD datasets.

* represents the animated dataset

NWPU Campus:

- the largest dataset for video anomaly detection with the longest duration, the largest number of classes of anomalies and scenes
- the only one containing scene-dependent anomalies
- the first one proposed for semi-supervised video anomaly anticipation

Problem Formulation

Video Anomaly Anticipation (VAA)

To anticipate whether an anomaly will occur in a future **period** of time.

- No need to distinguish the exact boundary between normality and anomaly
- Be robust to potential boundary ambiguity

Method

Forward-backward Scene-conditioned Auto-encoder

Structure of the forward/backward network

Training:

Forward loss:
$$L_f(f, \hat{f}) = ||f - \hat{f}||_2^2 + \lambda_{L1}|f - \hat{f}|$$

Backward loss: $L_b = \frac{1}{2}(L_f(\hat{f}_{t+i-n}^{(1)}, f_{t+i-n}) + L_f(\hat{f}_{t+i-n}^{(2)}, f_{t+i-n}))$
CVAE loss: $L_{KL}(\mathcal{N}(\hat{\mu}, \hat{\sigma}^2)||\mathcal{N}(0, 1)) = -\frac{1}{2}(\log \hat{\sigma}^2 - \hat{\mu}^2 - \hat{\sigma}^2 + 1)$

Inference:

Anomaly Detection: $s(t) = L_f(f_t, \hat{f}_t)$ Anomaly Anticipation: $s(t+1:t+\alpha) = \max(\{L_f(f_{t+i-n}, \hat{f}_{t+i-n})\}_{i=1}^{\alpha})$

VAD Performance Benchmarking

Method	Year	ST	Ave	Cor	Cam
FFP [3]	CVPR 18	72.8	84.9	64.7	-
MemAE [4]	ICCV 19	71.2	83.3	-	61.9
MPED-RNN [46]	CVPR19	73.4	-	64.3	-
MTP [29]	WACV 20	76.0	82.9	67.1	-
VEC-AM [13]	ACM MM 20	74.8	89.6	-	-
CDDA [36]	ECCV 20	73.3	86.0	-	-
BMAN [9]	TIP 20	76.2	90.0	-	-
Ada-Net [7]	TMM 20	70.0	89.2	-	-
MNAD [6]	CVPR 20	70.5	88.5	-	62.5
OG-Net [39]	CVPR 20	-	-	-	62.5
CT-D2GAN [47]	ACM MM 21	77.7	85.9	-	-
ROADMAP [17]	TNNLS 21	76.6	88.3	-	-
MESDnet [18]	TMM 21	73.2	86.3	-	-
AMMC-Net [40]	AAAI 21	73.7	86.6	-	64.5
MPN [11]	CVPR 21	73.8	89.5	-	64.4
HF ² -VAD [10]	ICCV 21	76.2	91.1	-	63.7
SSAGAN [48]	TNNLS 22	74.3	88.8	-	-
DLAN-AC [49]	ECCV 22	74.7	89.9	-	-
LLSH [35]	TCSVT 22	77.6	87.4	73.5	62.2
VABD [21]	TIP 22	78.2	86.6	72.2	-
Ours	-	79.2	86.8	73.6	68.2

- Our method achieves leading performance
- Our dataset is more challenging

JUNE 18-22, 2023

Study on Scene-dependent Anomalies

Results on scene-dependent anomalous datasets.

Method	Cam	ST-sd (reorganized)		
MemAE [4]	61.9	67.4		
MNAD [6]	62.5	68.2		
OG-Net [39]	62.5	69.6		
AMMC-Net [40]	64.5	64.9		
MPN [11]	64.4	76.9		
HF ² -VAD [10]	63.7	70.8		
Ours ($\gamma=0$)	65.8	70.4		
Ours (γ =1)	68.2	82.7		

Score gaps of different methods (the higher, the better).

Scene-conditioned VAE: +2.4% and +12.3%

The score gap is much higher than other methods.

Video Anomaly Anticipation

Results for video anomaly anticipation with different anticipation times.

α_t	0.5s	1.0s	1.5s	2.0s	2.5s	3.0s
Chance	50.0	50.0	50.0	50.0	50.0	50.0
Human	-	-	-	-	-	90.4
Ours (f-only)	65.2	64.6	64.2	63.6	63.1	62.5
Ours (f+b)	65.8	65.3	64.9	64.6	64.2	64.0

Forward-backward prediction is helpful for anomaly anticipation.

- We propose a large-scale and challenging dataset NWPU Campus for semi-supervised video anomaly detection and anticipation.
- We propose a forward-backward scene-conditioned model for VAD and VAA as well as handling scene-dependent anomalies.
- The proposed model achieves **leading performance on VAD**. It can also cope with **scenedependent anomalies** and **anomaly anticipation**.

Project Page: https://campusvad.github.io/