

Multi-Modal Representation Learning with Text-Driven Soft Masks

Jaeyoo Park

Seoul National University

Bohyung Han

Seoul National University

TUE-AM-266

Motivation

• Existing vision-language pretraining frameworks rely only on image-caption pairs with no fine-grained annotations.

• The model focuses on the most discriminative regions, and thus lacks a comprehensive understanding of various attributes observed in images despite detailed descriptions in captions.

Contribution

- Propose a self-supervised visual-linguistic representation learning framework by introducing a new operation, loss, and data augmentation strategy to utilize diversely augmented image-caption pairs.
- 1. Soft masking technique on visual features based on word-conditional Grad-CAM
- 2. Focal version of the ITC loss to focus more on hard but diverse examples
- Multi-modal data augmentation strategies for constructing more diversified samples by applying text maskings and rendering distortions on images

Preliminaries

- Pretraining Objectives
 - Image-Text Contrastive Loss (ITC)
 - Masked Language Modelling (MLM)
 - Image-Text Matching (ITM)

Architecture

- Visual Encoder : ViT-B/16
- Text Encoder : First 6 layers of BERT
- Multi-modal Encoder : Last 6 layers of BERT

Text-Driven Soft Feature Masking

- Observation
 - Global-level Image-text matching without fine-grained annotation
 - lacks in local information
 - Word-conditional Grad-CAM effectively captures the discriminative regions (objects, in general)
 - Even for stop-words
- Goal
 - Augment hard positive examples by partly masking informative regions
 - \circ $\,$ $\,$ To make the model focus on less attended regions

Text-Driven Soft Feature Masking

- Procedure
 - Compute Grad-CAM of the initial ITM score with respect to the cross-attention map of the image and text embeddings given by the multi-modal encoder

$$A_{\text{GCAM}}^{(i)} = \frac{1}{K} \sum_{k=1}^{K} \text{ReLU}\left(\frac{\partial q_{\text{ITM}}^{+(i)}}{\partial A_k^{(i)}} \odot A_k^{(i)}\right)$$

- Randomly sample a single word index
 - To boost stochasticity

$$\mathcal{M}_{\text{soft}}^{(i)} = \mathbb{1} - \hat{A}_{\text{GCAM}}^{(i)}[i_w] \longrightarrow \hat{V}_{\text{emb}}^{(i)} = \mathcal{M}_{\text{soft}}^{(i)} \odot V_{\text{emb}}^{(i)}$$

Focal Image-Text Contrastive Learning

- Boost the regularization effect from hard examples
- Large-scale image-caption corpora
 - Composed of **multiple datasets** with **large domain gaps**
 - The model **easily distinguishes** a lot of **samples from different datasets**
- Focal Loss
 - Alleviates the overfitting to easy examples while handling the class imbalance issue

$$\begin{aligned} \mathcal{L}_{\text{ITC}} &= -\frac{1}{2B} \sum_{i=1}^{B} \left[\log p_{v2t}^{(i)} + \log p_{t2v}^{(i)} \right] \\ \mathcal{L}_{\text{ITC}}^{*} &= -\frac{1}{2B} \sum_{i=1}^{B} \left[(1 - p_{v2t}^{(i)})^{\gamma} \log p_{v2t}^{(i)} + (1 - p_{t2v}^{(i)})^{\gamma} \log p_{t2v}^{(i)} \right] \end{aligned}$$

Multi-Modal Data Augmentation

- Strong Augmentation on Image input
 - Color distortion
 - RandAugment
 - Gaussian blur
 - Random crop, resize
- Combine ITM + MLM
 - Reduce computation cost
 - Baselines (ALBEF, TCL, etc.)
 - Forward twice
 - Image-Text matching with full text
 - Mask language modeling
 - Ours
 - Forward once
 - Image-Text matching with **masked text** + Mask language modeling

Training Objective

 $\mathcal{L}_{\text{Final}} = \mathcal{L}_{\text{ITM}} + \mathcal{L}_{\text{ITC}}^* + \mathcal{L}_{\text{MLM}} + \mathcal{L}_{\text{ITM}}^*.$

Experiments - Pretraining

- Image-Text Pair Matching of captioning datasets
- Datasets
 - COCO Captions
 - Visual Genome Dense Captions
 - SBU Captions
 - Conceptual Captions

	In·	domain	Out-of-domain					
Split	COCO Caption	s VG Dense Captions	Conceptual Captions	SBU Captions				
train	533K (106K)	5.06M (101K)	3.0M~(3.0M)	990K (990K)				
val	25K(5K)	106K (2.1K)	14K (14K)	10K (10K)				

Experiments - Downstream Tasks

- Downstream Tasks
 - Image-Text Retrieval
 - Fine-tune
 - Zero-shot*
 - Ablation Study
 - Visual Question Answering*
 - Visual Reasoning*
 - Visual Entailment*
- * : Please refer to the paper

Experiments - Image-Text Retrieval

- Retrieve the most relevant caption from candidate images, or vice versa
 - Image-to-Text Retrieval (TR) / Text-to-Image Retrieval (IR)
 - Metric : **Recall**
- Datasets : MSCOCO Caption / Flicker30K

				Flickr30	OK (1K)					MS-CO	CO (5K)		
Method	#Img	Т	ext Retrie	eval	Im	age Retri	eval	Te	ext Retrie	eval	Im	age Retri	eval
		R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
UNITER [4]	4M	87.3	98.0	99.2	75.6	94.1	96.8	65.7	88.6	93.8	52.9	79.9	88.0
VILLA [10]	4M	87.9	97.5	98.8	76.3	94.2	96.8						
OSCAR [24]	4M	_	_			_		70.0	91.1	95.5	54.0	80.8	88.5
ViLT [17]	4 M	83.5	96.7	98.6	64.4	88.7	93.8	61.5	86.3	92.7	42.7	72.9	83.1
UNIMO [23]	4 M	89.7	98.4	99.1	74.7	93.5	96.1			<u></u>	<u> </u>	<u> </u>	
SOHO [13]	200K	86.5	98.1	99.3	72.5	92.7	96.1	66.4	88.2	93.8	50.6	78.0	86.7
ALBEF [21]	4M	94.3	99.4	99.8	82.8	96.7	98.4	73.1	91.4	96.0	56.8	81.5	89.2
TCL [43]	4M	94.9	99.5	99.8	84.0	96.7	98.5	75.6	92.8	96.7	59.0	83.2	89.9
CODIS [9]	4M	95.1	99.4	99.9	83.3	96.1	97.8	75.3	92.6	96.6	58.7	82.8	89.7
VinVL [45]	6M							75.4	92.9	96.2	58.8	83.5	90.3
SoftMask++ (ours)	4M	95.4	99.7	99.9	84.6	96.8	98.5	76.6	93.5	96.6	60.2	83.7	90.5
ALIGN [14]	1.2B	95.3	99.8	100.0	84.9	97.4	98.6	77.0	93.5	96.9	59.9	83.3	89.8

Experiments - Image-Text Retrieval (Zero-shot)

- Retrieve the most relevant caption from candidate images, or vice versa
 - Image-to-Text Retrieval (TR) / Text-to-Image Retrieval (IR)
 - Metric : **Recall**
- Datasets : MSCOCO Caption / Flicker30K

• CLIP & ALIGN

• Trained on orders of magnitude larger datasets

	ſ	ſ		Flickr30	OK (1K)					MS-CO	CO (5K)		
Method	#Img	Т	ext Retrie	eval	Im	age Retri	eval	Te	ext Retrie	eval	Im	age Retri	ieval
		R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
UNITER [4]	4M	80.7	95.7	98.0	66.2	88.4	92.9	64.1	87.7	93.3	48.8	76.7	85.8
ViLT [17]	4M	73.2	93.6	96.5	55.0	82.5	89.8	56.5	82.6	89.6	40.4	70.0	81.1
CLIP [33]	400M	88.0	98.7	99.4	68.7	90.6	95.2	58.4	81.5	88.1	37.8	62.4	72.2
ALIGN [14]	1.2B	88.6	98.7	99.7	75.7	93.8	96.8	58.6	83.0	89.7	45.6	69.8	78.6
ALBEF [21]	4M	90.5	98.8	99.7	76.8	93.7	96.7	68.7	89.5	94.7	50.1	76.4	84.5
TCL [43]	4 M	93.0	99.1	99.6	79.6	95.1	97.4	71.4	90.8	95.4	53.5	79.0	87.1
CODIS [9]	4 M	91.7	99.3	99.8	79.7	94.8	97.3	71.5	91.1	95.5	53.9	79.5	87.1
SoftMask++ (ours)	4M	93.4	99.3	99.8	80.1	94.9	97.7	72.3	91.5	95.7	54.1	79.8	87.3

Experiments - Ablation Study

• Effectiveness of each component

SoftMask	Focal ITC	MMDA	TR@1	IR@1
			73.10	56.80
\checkmark			75.74	58.24
	\checkmark		75.66	58.85
		\checkmark	75.26	58.85
\checkmark	\checkmark		76.06	59.54
\checkmark		\checkmark	75.98	59.44
	\checkmark	\checkmark	76.16	59.62
\checkmark	\checkmark	\checkmark	76.62	60.15

Experiments - Ablation Study

• Soft vs Random Masking

Method	TR@1	IR@1
RandMask $(p = 0.3)$	75.82	59.52
RandMask ($p = 0.5$)	76.22	59.74
SoftMask (Ours)	76.62	60.15

Text : A zebra next to a deer

(a) Our soft mask

(b) Random hard mask

- Advantages of SoftMask over RandMask
 - SoftMask can generate more diverse, and more importantly, semantically meaningful visual embeddings
 - SoftMask based on Grad-CAM does not rely on additional hyperparameters while RandMask often comes with a masking ratio.

Experiments - Ablation Study

- SoftMask for MLM
 - MLM loss for the soft-masked features does not contribute to the downstream task
 - Reconstruction task is not well addressed when the signals from both modalities are unable
 - **ITM** enjoys the regularization effect since ITM is the task based on **global information**

$\mathcal{L}_{\mathrm{ITM}}^{*}$	$\mathcal{L}^*_{\mathrm{MLM}}$	TR@1	IR@1
		76.16	59.62
\checkmark		76.62	60.15
\checkmark	\checkmark	76.21	59.84

Experiments - Other Downstream Tasks

- Visual Entailment (SNLI-VE)
 - To predict whether an image semantically entails a text
 - 3-way classification (entailment/contradiction/neutral)
- NLVR²
 - \circ $\,$ $\,$ To reason about whether the text is true for the pair of images
 - Duplicate encoder weights to receive additional input image
- VQA 2.0
 - To find an answer for a question about an input image
 - Add decoder to generate answer from pre-defined candidates

	Method		SNLI-VE		$NLVR^2$		VQA	
			val	test	dev	test-P	dev	std
92	OSCAR [24]	4 M	_	_	78.1	78.4	73.2	73.4
	UNITER [4]	4M	78.6	78.3	77.2	77.9	72.7	72.9
O.D.	UNIMO [23]	4M	80.0	79.1	_		73.3	74.0
	VILLA [10]	4M	79.5	79.0	78.4	79.3	73.6	73.7
_	VinVL [45]	6M			82.1	83.1	75.9	76.1
	ViLT [17]	4M			75.7	76.1	71.3	_
	ALBEF [21]	4M	80.1	80.3	80.2	80.5	74.5	74.7
D.F.	TCL [43]	4M	80.5	80.3	80.5	81.3	74.9	74.9
	CODIS [9]	4M	80.5	80.4	80.5	80.8	75.0	74.9
	SoftMask++ (ours)	4M	80.9	80.6	80.6	81.6	75.0	75.1

Experiments - Computational Complexity

- Combining ITM forward path and MLM forward path
 - Reduces overall cost & improve performance
- Cost introduced by our SoftMask is negligible
 - Computing Grad-CAM & feed-forward through the multi-modal encoder

Table 6. Computation cost per a single pretraining iteration compared to ALBEF [19]. We measure computation cost on a single NVIDIA Quadro RTX GPU with 128 batch size per GPU.

Methods	Time (sec/it)	GPU Mem. (GB/GPU)
ALBEF [19]	1.94	41.5
Ours w/o SoftMask	1.91	38.7
Ours	1.98	41.4

Qualitative Results

"A sheep and lamb standing in the field"

- Our model provides more accurate and wide coverage of the objects
- Our model provides more accurate regions for the action attributes
- Failure cases
 - Our model may learn bias towards the object and scene Ο
 - If the most discriminative parts is masked with high weights Ο

Conclusion

- Propose a self-supervised visual-linguistic representation learning framework by introducing a new operation, loss, and data augmentation strategy to utilize diversely augmented image-caption pairs.
- 1. Soft masking technique on visual features based on word-conditional Grad-CAM
- 2. Focal version of the ITC loss to focus more on hard but diverse examples
- Multi-modal data augmentation strategies for constructing more diversified samples by applying text maskings and rendering distortions on images