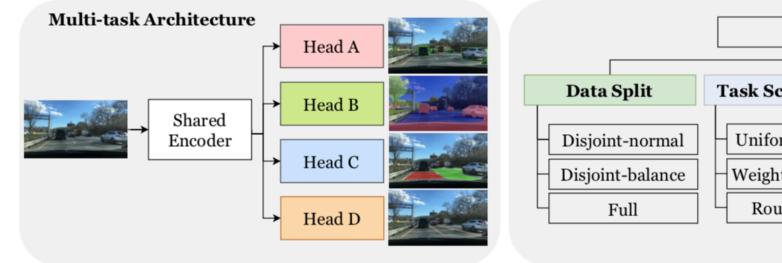
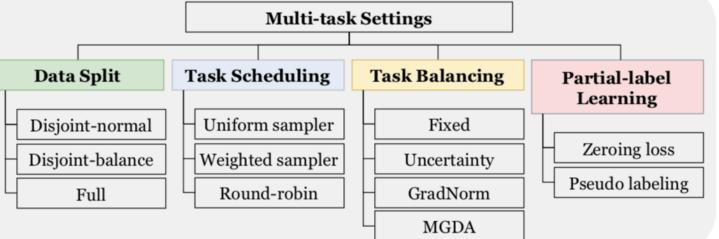
Visual Exemplar Driven Task-Prompting for Unified Perception in Autonomous Driving

Xiwen Liang, Minzhe Niu, Jianhua Han, Hang Xu,

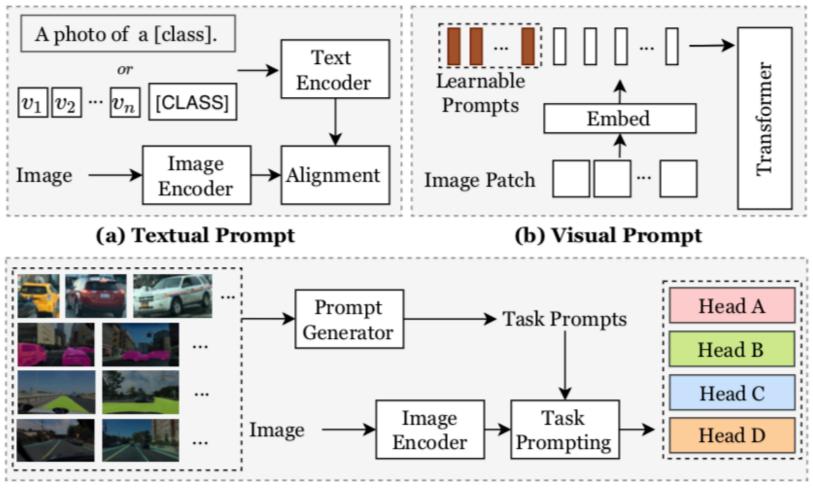
Chunjing Xu, Xiaodan Liang⁺

Paper Tag: WED-AM-132

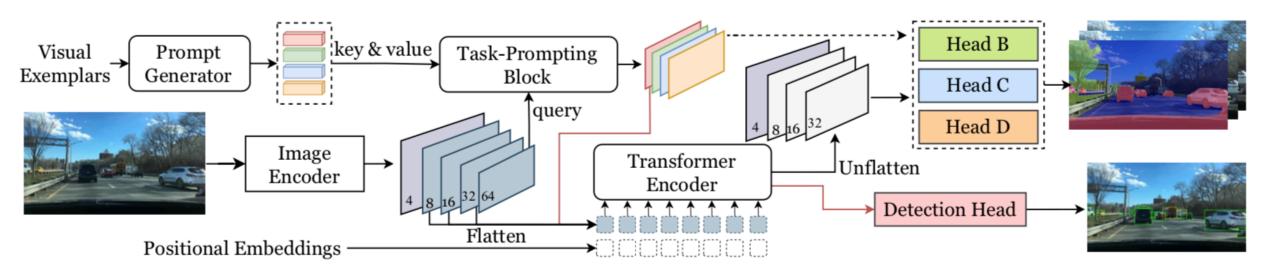




HUAWEI | NOAH'S ARK LAB

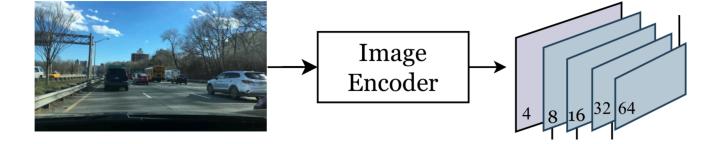

Related Work

- Multi-task Architectures
 - encoder-focused architectures
 - decoder-focused architectures
- Multi-task Settings

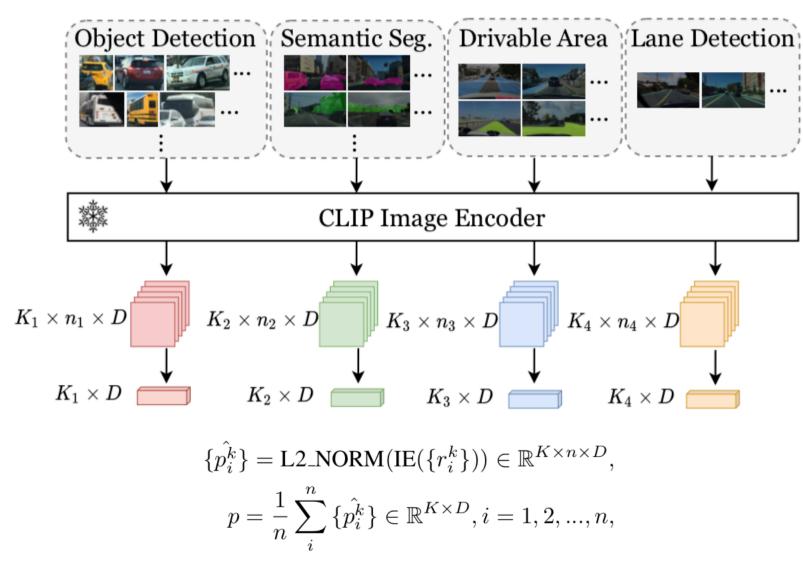


Related Work

(c) Visual Exemplar Driven Prompt (Ours)


VE-Prompt

- the image encoder to extract image features
- a shared transformer encoder for feature enhancement
- task-specific prompts generated by the prompt generator with visual exemplars
- a task-prompting block to integrate the visual representation with taskspecific prompts
- task-specific heads for different tasks.

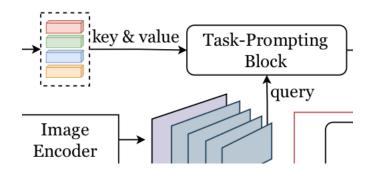

VE-Prompt

- Bridging CNN and Transformer
 - Image Encoder
 - Swin-FPN
 - Shared Transformer Encoder
 - $O = \operatorname{TransEncoder}(P + p_l).$
 - Detection Head
 - DINO
 - Segmentation Head
 - Semantic FPN

VE-Prompt

• Prompt Generation with Visual Exemplar

VE-Prompt


- Visual Exemplar Driven Task Prompting
 - Pre-head prompting

$$f_{pre} = \text{TransDecoder}(q = P_6, k = p, v = p),$$

• Post-head prompting

 $v' = \mathrm{MLP}(v \cdot f_{post}).$

$$f_{post} = \text{TransDecoder}(q = p, k = P_6, v = P_6).$$

Experiment Setting

• Disjoint-normal setting

• The number of labeled images for each task is as follows: object detection (10k), semantic segmentation (7k), drivable area segmentation (20k), and lane detection (20k).

• Disjoint-balance setting

• There are 28k images in this set and each task has 7k labeled images that are not overlapped with other tasks.

• Full setting

 Full-setting refers to experimenting on all available annotations on ~74k images in BDD100K and can be used to analyze the upper bound of different methods.

Evaluation Metric

• Whole multi-task performance [1]

$$\Delta_{MTL} = \frac{1}{T} \sum_{i}^{T} (M_{m,i} - M_{b,i}) / M_{b,i},$$

where Mm,i is the performance of multi-task model on task i, and Mb,i indicates the result of single-task baseline.

• Average performance

$$Avg = \frac{1}{4}(mAP + mIoU(SS) + mIoU(DA) + mIoU(LD))$$

[1] Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai, and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE transactions on pattern analysis and machine intelligence, 2021.

Experiment (task scheduling and partial-label learning)

-

- -

Setting	Setting Methods		AP50	AP75	mIoU (SS)	mIoU (DA)	loU (LD)	Avg.	$\Delta_{MTL}(\%)$
	Zeroing loss [51]	36.2	61.6	35.9	58.6	89.3	23.8	52.0	-2.68
Full	Pseudo labeling [15]	36.3	61.6	36.1	60.9	89.3	23.8	52.6	-1.65
	VE-Prompt (Ours)	39.2	64.9	39.0	63.2	89.4	24.0	54.0	+1.52
	Zeroing loss [51]	31.1	54.3	30.2	55.7	88.0	22.2	49.3	-2.64
	Uniform sampler [26]	30.1	52.8	29.0	60.6	88.6	23.4	50.7	-0.10
Disisint normal	Weighted sampler [26]	29.3	51.9	28.7	58.5	88.9	23.8	50.1	-1.19
Disjoint-normal	Round-robin [26]	30.2	53.1	29.7	61.0	88.7	23.5	50.9	+2.87
	Pseudo labeling [15]	32.6	54.6	32.3	59.7	88.2	23.0	50.9	+1.19
	VE-Prompt (Ours)	34.2	56.9	33.9	62.2	88.3	23.3	52.0	+3.95
	Zeroing loss [51]	29.7	52.3	29.2	57.5	86.7	21.4	48.8	-1.61
	Uniform sampler [26]	28.1	50.2	27.5	60.4	87.1	22.6	50.0	-0.44
Disjoint-balance	Round-robin [26]	28.4	50.8	27.8	60.0	87.1	22.6	49.5	-0.34
	Pseudo labeling [15]	31.3	52.8	30.8	60.2	87.0	22.2	50.2	+1.87
	VE-Prompt (Ours)	33.9	56.6	33.7	61.2	87.4	22.2	51.2	+4.72

Experiment (task balancing)

Setting	Method	mAP	AP50	AP75	mIoU (SS)	mIoU (DA)	loU (LD)	Avg.	$\Delta_{MTL}(\%)$
	Fixed [15]	36.3	61.6	36.1	60.9	89.3	23.8	52.6	-1.65
E.,11	Uncertainty [21]	36.2	61.6	35.5	61.2	89.5	24.6	52.9	-0.76
Full	GradNorm [5]	23.4	40.9	22.8	25.8	51.3	13.0	28.4	-46.24
	VE-Prompt (Ours)	39.2	64.9	39.0	63.2	89.4	24.0	54.0	+1.52
	Fixed [15]	32.6	54.6	32.3	59.7	88.2	23.0	50.9	+1.19
	Uncertainty [21]	32.2	54.1	31.5	59.8	88.6	23.8	51.1	+1.79
Disjoint-normal	GradNorm [5]	25.9	43.2	26.1	39.2	39.6	3.7	27.1	-46.18
	MGDA [41]	25.9	44.6	26.0	50.1	85.4	25.2	46.7	-7.26
	VE-Prompt (Ours)	34.2	56.9	33.9	62.2	88.3	23.3	52.0	+3.95
	Fixed [15]	31.3	52.8	30.8	60.2	87.0	22.2	50.2	+1.87
	Uncertainty [21]	31.2	53.1	30.9	59.9	87.0	22.2	50.1	+1.66
Disjoint-balance	GradNorm [5]	28.9	49.0	28.7	46.8	57.4	19.6	38.2	-17.26
	GradNorm [*] [5]	30.7	51.8	30.4	56.6	86.9	21.7	49.0	-0.73
	MGDA [41]	21.0	38.0	20.3	45.5	82.7	24.3	43.4	-12.48
	VE-Prompt (Ours)	33.9	56.6	33.7	61.2	87.4	22.2	51.2	+4.72

Comparison with single-task and multi-task learning baselines

Setting	etting Methods		AP50	AP75	mIoU (SS)	mIoU (DA)	loU (LD)	Avg.	$\Delta_{MTL}(\%)$
	Sparse R-CNN [43]	36.5	61.5	36.1	-	-	-	-	-
	DINO [59]	38.6	64.2	38.2	-	-	-	-	-
	Semantic FPN [22]	-	-	-	59.8	-	-	-	-
Full	Semantic FPN [22]	-	-	-	-	89.1	-	-	-
1 ull	Semantic FPN [22]	-	-	-	-	-	25.9	-	-
	Sparse R-CNN based	36.3	61.6	36.1	60.9	89.3	23.8	52.6	-1.65
	DINO based	39.4	64.5	39.8	61.5	84.9	22.0	52.0	-2.25
	VE-Prompt (Ours)	39.2	64.9	39.0	63.2	89.4	24.0	54.0	+1.52
	Sparse R-CNN [43]	28.8	50.4	28.0	-	-	-	-	-
	DINO [59]	31.2	53.0	30.5	-	-	-	-	-
	Semantic FPN [22]	-	-	-	59.8	-	-	-	-
Disjoint-normal	Semantic FPN [22]	-	-	-	-	87.8	-	-	-
Disjoint-normai	Semantic FPN [22]	-	-	-	-	-	25.2	-	-
	Sparse R-CNN based	32.6	54.6	32.3	59.7	88.2	23.0	50.9	+1.19
	DINO based	33.1	55.9	32.2	59.2	87.2	22.7	50.6	+0.83
	VE-Prompt (Ours)	34.2	56.9	33.9	62.2	88.3	23.3	52.0	+3.95
	Sparse R-CNN [43]	28.1	49.2	26.7	-	-	-	-	-
	DINO [59]	29.4	50.8	28.1	-	-	-	-	-
	Semantic FPN [22]	-	-	-	59.8	-	-	-	-
Disjoint halanga	Semantic FPN [22]	-	-	-	-	85.5	-	-	-
Disjoint-balance	Semantic FPN [22]	-	-	-	-	-	23.7	-	-
	Sparse R-CNN based	31.3	52.8	30.8	60.2	87.0	22.2	50.2	+1.87
	DINO based	33.5	55.6	33.1	58.1	85.2	21.4	50.0	+1.58
	VE-Prompt (Ours)	33.9	56.6	33.7	61.2	87.4	22.2	51.2	+4.72

Experiment (nulmages)

• We also conduct experiments on nulmages dataset, which covers two tasks, object detection and semantic segmentation.

Model	mAP	AP50	AP75	mIoU	Avg.
Sparse R-CNN based	50.4	76.8	54.5	53.8	52.1
DINO based	55.5	81.6	60.6	56.7	56.1
VE-Prompt (Ours)	55.8	81.9	60.7	59.1	57.5

Ablation study

• Modules in VE-Prompt

	mAP	mIoU (SS)	mIoU (DA)	loU (LD)
DINO based	33.5	58.1	85.2	21.4
w/ shared TE	32.2	60.5	86.5	21.4
+ Prompt	33.9	61.2	87.4	22.2

• Task-specific prompts

#	Prompt	Post	Pre	mAP	mIoU (SS)	mIoU (DA)
1	×	X	×	32.2	60.5	86.5
2	1	✓	X	33.2 33.9	58.9	86.4
3	1	×	\checkmark	33.9	61.2	87.4

Ablation study

• Initialization for prompt vectors

CLIP Initialization	mAP	mIoU (SS)	mIoU (DA)	IoU (LD)
×	33.5	61.0	87.2	21.9
1	33.9	61.2	87.4	22.2

Fixed	mAP	AP50	AP75	mIoU (SS)	mIoU (DA)	loU (LD)
√	33.3	55.3	32.5	61.1	87.2 87.4	22.1
×	33.9	50.0	33.1	01.2	8/.4	22.2

Conclusion

- We provide an in-depth analysis of popular multi-task learning methods under the realistic scenarios of self-driving, which covers four common perception tasks, i.e., object detection, semantic segmentation, drivable area segmentation, and lane detection.
- We propose visual exemplar driven task-prompting (VE- Prompt), which incorporates visual exemplars of different tasks to provide highquality task-specific knowledge. Be- sides, the proposed framework bridges transformer and convolutional layers for efficient and accurate unified perception in autonomous driving.
- Experimental results show that VE-Prompt can achieve superior performance on large- scale driving dataset BDD100K.

