

Best of Both Worlds: VIII and Cal Contrastive Learning with Tabular and Imaging Data

¹Technical University of Munich, ²Klinikum Rechts der Isar, ³Imperial College London

Paul Hager^{1,2}, Martin J Menten^{1,2,3}, Daniel Rückert^{1,2,3}

THU-PM-317

Motivation

How can we learn multimodal from rich clinical data and infer unimodal using only images?

Individual Diagnosis

biobank

- ~50k imaging subjects
- 1k+ tabular features
 - lifestyle, questionnaire, interview, physical measures, etc.

biobank

- ~50k imaging subjects
 - cardiac MRI
- 1k+ tabular features
 - lifestyle, questionnaire, interview, physical measures, etc.
 - 117 with published cardiac effect

- ~50k imaging subjects
 - cardiac MRI
- 1k+ tabular features
 - lifestyle, questionnaire, interview, physical measures, etc.
 - 117 with published cardiac effect

er	Age	BP	BMI	Sex	Fitness	Alco
-	62	150/90	29.2	Male	High	Mod

biobank

- ~50k imaging subjects
 - cardiac MRI
- 1k+ tabular features
 - lifestyle, questionnaire, interview, physical measures, etc.
 - 117 with published cardiac effect

Age	BP	BMI	Sex	Fitness	Alco
62	150/90	29.2	Male	High	Mode

Targets: **Myocardial Infarction**, **Coronary Artery Disease (CAD)**

Setup - DVM Cars

Target: Car Model

Huang, Jingmin, et al. "DVM-CAR: A large-scale automotive dataset for visual marketing research and applications." 2022 IEEE International Conference on Big Data (Big Data). IEEE, 2022.

Contrastive Learning - SimCLR

Bahri, Dara, et al. "Scarf: Self-Supervised Contrastive Learning using Random Feature Corruption." International Conference on Learning Representations.

Multimodal Contrastive Learning

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference on machine learning. PMLR, 2021.

		Ĵ	Ì	Ĵ		Ţ
		Τ ₁	T ₂	Τ ₃		T _N
	I ₁	$I_1 \cdot T_1$	$I_1 \cdot T_2$	$I_1 \cdot T_3$		$I_1 \cdot T_N$
-	I ₂	$I_2 \cdot T_1$	$I_2 \cdot T_2$	$I_2 \cdot T_3$		$I_2 \cdot T_N$
	I ₃	$I_3 \cdot T_1$	$I_3 \cdot T_2$	$I_3 \cdot T_3$		$I_3 \cdot T_N$
-	:	:	:	÷	<i>т.</i>	:
	I _N	$I_N \cdot T_1$	I _N ·T₂	I _N ∙T ₃		I _N ·T _N

CLIP

Multimodal Contrastive Learning

1. Multimodal contrastive learning with tabular data

Multimodal Pretraining Improves Unimodal Prediction

Model	AUC (%) Frozen / Infarction	AUC (%) Trainable / Infarction	AUC (%) Frozen / CAD	AUC (%) Trainable / CAD	Top-1 Accuracy (%) Frozen / DVM	Top-1 Accuracy (%) Trainable / DVM
Supervised ResNet50	72.37 ± 1.80	72.37 ± 1.80	68.84±2.54	68.84±2.54	87.97 ± 2.20	87.97±2.20
SimCLR	73.69 ± 0.36	73.62 ± 0.70	69.86 ± 0.21	71.46 ± 0.71	65.48 ± 0.48	88.76 ± 0.81
BYOL	69.18±0.43	70.69 ± 2.09	66.91±0.19	70.66 ± 0.22	59.73 ± 0.28	<u>89.18±0.90</u>
SimSiam	71.72 ± 0.18	72.31 ± 0.26	67.79±0.12	70.13 ± 0.35	22.11 ± 2.83	87.43 ± 0.88
BarlowTwins	66.06 ± 1.11	71.35 ± 1.23	62.90 ± 0.23	69.63±0.58	52.57 ± 0.08	85.47 ± 0.82
Multimodal Imaging	76.35±0.19	75.37 ± 0.43	74.45±0.09	73.08 ± 0.75	91.43±0.13	93.00±0.18

Multimodal Pretraining Is Beneficial in Low-Data Regimes

Integrated Gradients and Explainability

Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. "Axiomatic attribution for deep networks." International conference on machine learning. PMLR, 2017.

IG(input, base) ::= (input - base) * $\int_{0^{-1}} \nabla F(\alpha * input + (1 - \alpha) * base) d\alpha$

Integrated Gradients

Integrated Gradients and Explainability

Baseline

Smoking	Consumes	 Physical
Status	Alcohol	Activity
0	0	0

	Smoking Status	Consumes Alcohol	 Physical Activity
S1	0	0	1
S2	1	1	1
S3	1	1	0

Original image

Original Tabular Entry

Embedding

Integrated Gradients

Smoking	Consumes		Physic
Status	Alcohol	•••	Activi
0.145	0.678		-0.36

Feature

Guided Grad-CAM

Experiment	Tabular Features	Importance Percentage (%)	AUC (%) Infarction	AUC (%) CAD	Tabular Features	Importance Percentage (%)	Top-1 Accuracy (%) DVM
MM Imaging Baseline	117	100.0	76.35±0.19	74.45±0.09	16	100.0	91.43 ± 0.13
Morphometric Features	24	47.0	$75.22{\pm}0.30$	$\underline{73.71 \pm 0.09}$	5	56.4	92.33±0.05
Non-Morphometric Features	93	53.0	$\underline{75.46 \pm 0.19}$	$72.18{\pm}0.25$	11	43.6	$89.14 {\pm} 0.24$

Guided Grad-CAM

	-0.00
	0.

Supervised Contrastive Learning - FN Elimination

Huynh, Tri, et al. "Boosting contrastive self-supervised learning with false negative cancellation." Proceedings of the IEEE/CVF winter conference on applications of computer vision. 2022.

Supervised Contrastive Learning

Self Supervised Contrastive

Khosla, Prannay, et al. "Supervised contrastive learning." Advances in neural information processing systems 33 (2020): 18661-18673.

Supervised Contrastive

			3% Positive	6% Positive
Contrastive	Label Used	Model	AUC (%) Infarction	AUC (%) CAD
\checkmark		Multimodal Imaging Baseline	76.35 ± 0.19	74.45 ± 0.09
	\checkmark	Supervised ResNet50	72.37 ± 1.80	68.84±2.54
\checkmark	\checkmark	Label as a Feature (LaaF)	76.60±0.42	73.76 ± 0.31
\checkmark	\checkmark	FN Elimination	75.38 ± 0.06	72.45 ± 0.09
\checkmark	\checkmark	FN Elimination + LaaF	75.30 ± 0.05	72.39 ± 0.08
\checkmark	\checkmark	SupCon		2.152.52
\checkmark	\checkmark	SupCon + LaaF		

			3% Positive	6% Positive
Contrastive	Label Used	Model	AUC (%) Infarction	AUC (%) CAD
\checkmark		Multimodal Imaging Baseline	76.35 ± 0.19	74.45 ± 0.09
	\checkmark	Supervised ResNet50	72.37 ± 1.80	68.84±2.54
\checkmark	\checkmark	Label as a Feature (LaaF)	76.60±0.42	73.76 ± 0.31
\checkmark	\checkmark	FN Elimination	75.38 ± 0.06	72.45 ± 0.09
\checkmark	\checkmark	FN Elimination + LaaF	75.30 ± 0.05	72.39 ± 0.08
\checkmark	\checkmark	SupCon		
\checkmark	\checkmark	SupCon + LaaF		

FN Elimination

			3% Positive	6% Positive
Contrastive	Label Used	Model	AUC (%) Infarction	AUC (%) CAD
\checkmark		Multimodal Imaging Baseline	76.35 ± 0.19	74.45 ± 0.09
	\checkmark	Supervised ResNet50	72.37 ± 1.80	68.84±2.54
\checkmark	\checkmark	Label as a Feature (LaaF)	76.60±0.42	73.76 ± 0.31
\checkmark	\checkmark	FN Elimination	75.38 ± 0.06	72.45 ± 0.09
\checkmark	\checkmark	FN Elimination + LaaF	75.30 ± 0.05	72.39 ± 0.08
\checkmark	\checkmark	SupCon		
\checkmark	\checkmark	SupCon + LaaF		

Contrastive	Label Used	Model	AUC (%) Infarction	AUC (%) CAD	Top-1 Accuracy (%) DVM
~		Multimodal Imaging Baseline	76.35 ± 0.19	74.45 ± 0.09	91.43±0.13
	\checkmark	Supervised ResNet50	72.37 ± 1.80	68.84±2.54	87.97±2.20
\checkmark	\checkmark	Label as a Feature (LaaF)	76.60±0.42	73.76 ± 0.31	93.56±0.08
\checkmark	\checkmark	FN Elimination	75.38 ± 0.06	72.45 ± 0.09	92.39 ± 0.18
\checkmark	\checkmark	FN Elimination + LaaF	75.30 ± 0.05	72.39 ± 0.08	94.07 ± 0.05
\checkmark	\checkmark	SupCon			93.82 ± 0.11
\checkmark	\checkmark	SupCon + LaaF			94.40 ± 0.04

Model	Top-1 Acc. (%) DVM (100%)	Top-1 Acc. (%) DVM (10%)	Top-1 Acc. (%) DVM (1%)
Multimodal Baseline	91.43±0.13	$86.30{\pm}0.08$	$60.18 {\pm} 0.21$
Supervised ResNet50	87.97±2.20	30.69 ± 14.02	$2.84{\pm}0.00$
Label-as-a-Feature (LaaF)	93.56±0.08	89.87±0.03	67.50±0.10
FN Elim.	92.39±0.18	87.61±0.07	$63.95 {\pm} 0.14$
FN Elim. + LaaF	<u>94.07±0.05</u>	89.99±0.05	63.37±0.70
SupCon	93.82±0.11	89.75±0.08	63.29±0.33
SupCon + LaaF	94.40±0.04	90.37±0.05	64.01±0.77

