



# WED-AM-163 Generative Diffusion Prior for Unified Image Restoration and Enhancement

Ben Fei<sup>1,2,\*</sup>, Zhaoyang Lyu<sup>2,\*</sup>, Liang Pan<sup>3</sup>, Junzhe Zhang<sup>3</sup>, Weidong Yang<sup>1,†</sup>, Tianyue Luo<sup>1</sup>, Bo Zhang<sup>2</sup>, Bo Dai<sup>2,†</sup> <sup>1</sup> Fudan University, <sup>2</sup>Shanghai AI Laboratory, <sup>3</sup>S-Lab, Nanyang Technological University

### **Overview**





(b) Blind, Non-linear, Multiple-guidance or Any-size Image Restoration

## **Related work**





#### Deep Generative Prior (ECCV20, TPAMI21)



Denoising Diffusion Restoration Models (NIPS22)

## **Motivation**





- GDP exploit pre-trained DDPMs with variational inference, and achieve satisfactory results on multiple restoration tasks
- The reconstructed image is consistent with the degraded images
- Better generalization ability
- Can tackle the multi-degradation problem and blind problem
- Achieve arbitrary size image generation



## **Generative Diffusion Prior**





$$-(s\Sigma 
abla_{oldsymbol{x}_t} \mathcal{L}\left(oldsymbol{x}_t,oldsymbol{y}
ight) + \lambda\Sigma 
abla_{oldsymbol{x}_t} \mathcal{Q}\left(oldsymbol{x}_t
ight))$$

Algorithm 1: GDP- $x_t$  with fixed degradation model: Conditioner guided diffusion sampling on  $x_t$ , given a diffusion model  $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$ , corrupted image conditioner y.

Input: Corrupted image y, gradient scale s, degradation model  $\mathcal{D}$ , distance measure  $\mathcal{L}$ , optional quality enhancement loss  $\mathcal{Q}$ , quality enhancement scale  $\lambda$ . Output: Output image  $x_0$  conditioned on ySample  $x_T$  from  $\mathcal{N}(0, \mathbf{I})$ for t from T to 1 do  $\mu, \Sigma = \mu_{\theta}(x_t), \Sigma_{\theta}(x_t)$   $\mathcal{L}_{x_t}^{total} = \mathcal{L}(y, \mathcal{D}(x_t)) + \mathcal{Q}(x_t)$ Sample  $x_{t-1}$  by  $\mathcal{N}(\mu + s \nabla_{x_t} \mathcal{L}_{x_t}^{total}, \Sigma)$ end return  $x_0$  Algorithm 2: GDP- $x_0$ : Conditioner guided diffusion sampling on  $\tilde{x}_0$ , given a diffusion model  $(\mu_\theta (x_t), \Sigma_\theta (x_t))$ , corrupted image conditioner y. Input: Corrupted image y, gradient scale s, degradation model  $\mathcal{D}_\phi$  with randomly initiated parameters  $\phi$ , learning rate l

 $\mathcal{D}_{\phi} \text{ with randomly initiated parameters } \phi, \text{ learning rate } \mathcal{D}_{\phi} \text{ with randomly initiated parameters } \phi, \text{ learning rate } \mathcal{D}_{\phi} \text{ with randomly initiated parameters } \phi, \text{ learning rate } \mathcal{D}_{\phi} \text{ with randomly initiated parameters } \phi, \text{ learning rate } \mathcal{D}_{\phi} \text{ for optimizable degradation model, distance measure } \mathcal{L}, \text{ optional quality enhancement loss } \mathcal{Q}, \text{ quality enhancement scale } \lambda.$  **Output:** Output image  $\boldsymbol{x}_{0}$  conditioned on  $\boldsymbol{y}$ Sample  $\boldsymbol{x}_{T}$  from  $\mathcal{N}(0, \mathbf{I})$  **for** t from T to 1 **do**  $\mu, \Sigma = \mu_{\theta}(\boldsymbol{x}_{t}), \Sigma_{\theta}(\boldsymbol{x}_{t})$   $\tilde{\boldsymbol{x}}_{0} = \frac{\boldsymbol{x}_{t}}{\sqrt{\alpha}_{t}} - \frac{\sqrt{1-\overline{\alpha}_{t}}\epsilon_{\theta}(\boldsymbol{x}_{t},t)}{\sqrt{\alpha}_{t}}$   $\mathcal{L}_{\phi,\tilde{\boldsymbol{x}}_{0}}^{total} = \mathcal{L}(\boldsymbol{y}, \mathcal{D}_{\phi}(\tilde{\boldsymbol{x}}_{0})) + \mathcal{Q}(\tilde{\boldsymbol{x}}_{0})$   $\phi \leftarrow \phi - l \nabla_{\phi} \mathcal{L}_{\phi,\tilde{\boldsymbol{x}}_{0}}^{total}$   $\text{Sample } \boldsymbol{x}_{t-1} \text{ by } \mathcal{N} \left( \mu + s \nabla_{\tilde{\boldsymbol{x}}_{0}} \mathcal{L}_{\phi,\tilde{\boldsymbol{x}}_{0}}^{total}, \Sigma \right)$  **end** 



return  $\boldsymbol{x}_0$ 

## **4x Super-resolution**





## **4x Super-resolution**





## Deblurring





Blurred GDP-x<sub>t</sub> GDP-x<sub>0</sub> Original Blurred GDP-x<sub>t</sub> GDP-x<sub>0</sub> Original

Blurred GDP-x<sub>t</sub> GDP-x<sub>0</sub> Original

Blurred GDP-x<sub>t</sub> GDP-x<sub>0</sub> Original

## Deblurring





## **25% Inpainting**





## **Inpainting-lorem**





**GDP-**x<sub>t</sub> GDP-x<sub>0</sub> Occluded

**Occluded GDP-x**<sub>t</sub>

**GDP-x**<sub>0</sub> Original

**GDP-**x<sub>t</sub> Occluded

GDP-x<sub>0</sub> Original

**GDP-**x<sub>t</sub> Occluded GDP-x<sub>0</sub> Original

## **Inpainting-lolcat**





**Occluded GDP-x**<sub>t</sub> GDP-x<sub>0</sub> Original

Occluded GDP-x<sub>t</sub>

HEEZBU

I CAN HAZ

CHEEZBURGER?

I CAN HAZ

EEZBURGE

HEZBURGER

**CHEEZBURGER?** 

CHEEZBURGER

I CAN H

I CAN HAZ

**DP-x<sub>t</sub> GDP-x<sub>0</sub> Original** 

 $Occluded \quad GDP-x_t \quad GDP-x_0 \quad Original$ 

CHEEZBU RGER?

**Occluded GDP-x**<sub>t</sub> **GDP-x**<sub>0</sub> **Original** 



## **Colorization**





## **Multi-linear Degradation**



Gray + Blur (3)

Output

Gray + 10 % inpainting

Output



Gray + 2x Super resolution

Output



## **Quantitative comparison**



| Method           | $4 \times$ Super-resolution |                 |                          |                          | Deblur |      |                | 25% Impainting  |        |        | Colorization |                          |        |        |               |       |
|------------------|-----------------------------|-----------------|--------------------------|--------------------------|--------|------|----------------|-----------------|--------|--------|--------------|--------------------------|--------|--------|---------------|-------|
| Wiethod          | PSNR ↑                      | SSIM $\uparrow$ | Consistency $\downarrow$ | $\mathrm{FID}\downarrow$ | PSNR ↑ | SSIM | ↑ Consistency↓ | $FID\downarrow$ | PSNR ↑ | SSIM ↑ | Consistency↓ | $\mathrm{FID}\downarrow$ | PSNR ↑ | SSIM ↑ | Consistency ↓ | FID↓  |
| DGP [57]         | 21.65                       | 0.56            | 158.74                   | 152.85                   | 26.00  | 0.54 | 475.10         | 136.53          | 27.59  | 0.82   | 414.60       | 60.65                    | 18.42  | 0.71   | 305.59        | 94.59 |
| SNIPS [29]       | 22.38                       | 0.66            | 21.38                    | 154.43                   | 24.73  | 0.69 | 60.11          | 17.11           | 17.55  | 0.74   | 587.90       | 103.50                   | -      | -      | -             | -     |
| RED [63]         | 24.18                       | 0.71            | 27.57                    | 98.30                    | 21.30  | 0.58 | 63.20          | 69.55           | -      | -      | -            | -                        | -      | -      | -             | -     |
| DDRM [28]        | 26.53                       | 0.78            | 19.39                    | 40.75                    | 35.64  | 0.98 | 50.24          | 4.78            | 34.28  | 0.95   | 4.08         | 24.09                    | 22.12  | 0.91   | 37.33         | 47.05 |
| $GDP-x_t$        | 24.27                       | 0.67            | 80.32                    | 64.67                    | 25.86  | 0.75 | 54.08          | 5.00            | 31.06  | 0.93   | 8.80         | 20.24                    | 21.30  | 0.86   | 75.24         | 66.43 |
| $\text{GDP-}x_0$ | 24.42                       | 0.68            | 6.49                     | 38.24                    | 25.98  | 0.75 | 41.27          | 2.44            | 34.40  | 0.96   | 5.29         | 16.58                    | 21.41  | 0.92   | 36.92         | 37.60 |

• GDP-x<sub>0</sub> outperforms all baseline methods in Consistency and FID.

• Conventional automated evaluation measures (PSNR and SSIM) do not correlate well with human perception when the input resolution is low, and the magnification is large.

## Accelerated by DDIM – 4x SR





Low-res DDRM (20)

GDP-x<sub>0</sub> -DDIM (20)

Original



Low-res DDRM (20)



## **Accelerated by DDIM – Deblur**

 $GDP-x_0-DDIM(20)$ 

23.77

0.623

9.24

39.46

24.87

0.683

44.39

3.66

30.82

0.892

7.10

19.70

21.13

0.840

37.33

41.38







## **Non-linear and blind image restoration**



#### Algorithm 6: Restore Any-size Image

ð S

NANYANG

**TECHNOLOGICAL** 

**Input:** Conditioner guided diffusion sampling on  $\tilde{x}_0$ , given a diffusion model  $(\mu_{\theta}(\boldsymbol{x}_{t}), \Sigma_{\theta}(\boldsymbol{x}_{t}))$ , corrupted image conditioner  $\boldsymbol{y}$ , degradation model  $\mathcal{D}_{\phi}: \boldsymbol{y} = f\boldsymbol{x} + \boldsymbol{\mathcal{M}}$ with randomly initiated parameters  $\phi$ , learning rate l for optimizable degradation model. Dictionary of Koverlapping patch locations, and a binary patch mask  $\mathbf{P}^k$ . **Output:** Output image  $\boldsymbol{x}_0$  conditioned on  $\boldsymbol{y}$ Sample  $\boldsymbol{x}_T$  from  $\mathcal{N}(0, \mathbf{I})$ for t from T to 1 do  $\mu, \Sigma = \mu_{ heta} \left( \boldsymbol{x}_{t} 
ight), \Sigma_{ heta} \left( \boldsymbol{x}_{t} 
ight)$ Mean vector  $\mathbf{\Omega}_t = \mathbf{0}$  and variance vector  $\boldsymbol{\psi}_t =$ **0** and weight vector  $\mathbf{G} = \mathbf{0}$  and  $f = \mathbf{0}$  and  $\mathcal{M} = \mathbf{0}$ for k = 1, ..., K do  $\boldsymbol{x}_{t}^{k} = \operatorname{Crop}\left(\mathbf{P}^{k} \circ \boldsymbol{x}_{t}\right)$  $\mathbf{y}^{k} = \operatorname{Crop}\left(\mathbf{P}^{k} \circ \mathbf{y}\right)$  $\mathcal{M}^k = \operatorname{Crop}\left(\mathbf{P}^k \circ \mathcal{M}\right)$  $egin{aligned} & ilde{m{x}}_{0}^{k} = rac{m{x}_{t}^{k}}{\sqrt{ar{lpha}_{t}}} - rac{\sqrt{1-ar{lpha}_{t}}\epsilon_{ heta}\left(m{x}_{t}^{k},t
ight)}{\sqrt{ar{lpha}_{t}}} \ & \mathcal{L}_{\phi,m{ ilde{m{x}}}_{0}^{total}}^{total} = \mathcal{L}(m{y}^{k},\mathcal{D}_{\phi}\left(m{ ilde{m{x}}}_{0}^{k}
ight)) + \mathcal{Q}\left(m{ ilde{m{x}}}_{0}^{k}
ight) \end{aligned}$  $\begin{array}{l} \stackrel{\phi, \boldsymbol{x}_{0}^{*}}{f^{k} \leftarrow f^{k} - l \nabla_{f^{k}} \mathcal{L}_{f^{k}, \boldsymbol{\tilde{x}}_{0}^{k}}^{total} \\ \mathcal{M}^{k} \leftarrow \mathcal{M}^{k} - l \nabla_{\mathcal{M}^{k}} \mathcal{L}_{\mathcal{M}^{k}, \boldsymbol{\tilde{x}}_{0}^{k}}^{total} \end{array}$  $\mu^k = \mu + s 
abla_{ ilde{m{x}}_0^k} \mathcal{L}_{\phi, ilde{m{x}}_0^k}^{total}$  $f = f + f^k$  $\mathbf{\Omega}_t = \mathbf{\Omega}_t + \mathbf{P}_k \cdot \mu^k$  $egin{aligned} & \psi_t = \psi_t + \mathbf{P}^k \cdot \sigma^k \ & \mathcal{M} = \mathcal{M} + \mathbf{P}^k \cdot \mathcal{M}^k \end{aligned}$  $\mathbf{G} = \mathbf{G} + \mathbf{P}^k$ end  $//\odot$ : element-wise division  $\mathbf{\Omega}_t = \mathbf{\Omega}_t \oslash \mathbf{G}$  $\psi_t = \psi_t \oslash \mathbf{G}$  $\mathcal{M} = \mathcal{M} \oslash \mathbf{G}$ f = f/KSample  $\boldsymbol{x}_{t-1}$  by  $\mathcal{N}(\boldsymbol{\Omega}_t, \psi_t)$ end **return** Restored any-size image  $\boldsymbol{x}_0$ 

18

## **Low-light enhancement-LOL**



DSLR

LightenNet

Zero-DCE

DSLR

LightenNet

Zero-DCE

DSLR

LightenNet

EnlightenGAN

LLNet

Zero-DCE++

EnlightenGAN

LLNet

Zero-DCE++

EnlightenGAN

LLNet

Zero-DCE++



Retinex-Net RRDNet TBFEN

Zero-DCE

19

## Low-light enhancement-VE-LOL







| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | ·                  | ★ 员享受<br>office                       | ↓ 员享受<br>6所代案   | · 员享受<br>· 词 R 3           | ↓ 员享受<br>#50案 |
|------------------------------------------------|--------------------|---------------------------------------|-----------------|----------------------------|---------------|
| Input                                          | GDP-x <sub>0</sub> | GDP-xt                                | DRBN            | DSLR                       | EnlightenGAN  |
|                                                |                    |                                       |                 |                            |               |
| 6折优惠                                           | 6折优惠               | 6折伐思                                  | 6折优惠            | 6折代惠                       | 6折伐围          |
| GT                                             | ExCNet             | KinD                                  | KinD++          | LightenNet                 | LLNet         |
| ★员享受<br>6#KE                                   | ↓ 员享受<br>6#1代章     | · · · · · · · · · · · · · · · · · · · | ↓ 员享受<br>6ff(## | ↓ 日本                       | ÷员享受<br>⊮###  |
| MBLLEN                                         | Retinex-Net        | RRDNet                                | TBFEN           | Zero-DCE                   | Zero-DCE++    |
|                                                |                    |                                       |                 |                            |               |
| Input                                          | GDP-x <sub>0</sub> | GDP-x <sub>t</sub>                    | DRBN            | DSLR                       | EnlightenGAN  |
|                                                |                    |                                       |                 |                            |               |
| GT                                             | ExCNet             | KinD                                  | KinD++          | LightenNet                 | LLNet         |
|                                                |                    |                                       |                 |                            |               |
| MBLLEN                                         | Retinex-Net        | RRDNet                                | TBFEN           | Zero-DCE                   | Zero-DCE++    |
|                                                |                    |                                       |                 |                            |               |
| Input                                          |                    |                                       |                 |                            |               |
|                                                | GDP-x <sub>0</sub> | GDP-x <sub>t</sub>                    | DRBN            | DSLR                       | EnlightenGAN  |
|                                                | GDP-x <sub>0</sub> | GDP-xt                                | DRBN            | DSLR                       | EnlightenGAN  |
| GT                                             | GDP-x <sub>0</sub> | GDP-xt                                | DRBN<br>KinD++  | DSLR<br>LightenNet         | EnlightenGAN  |
| GT                                             | GDP-x0<br>ExCNet   | GDP-xt<br>FinD                        | DRBN<br>KinD++  | DSLR<br>DSLR<br>LightenNet | EnlightenGAN  |

## Low-light enhancement-LoLi-phone





Original

GDP-X<sub>0</sub>

Original

GDP-X<sub>0</sub>



LLNet MBLLEN RRDNet TBFEN Retinex-Net Zero-DCE Zero-DCE++

#### **Low-light enhancement-brightness control**





$$L_{\exp} = \frac{1}{U} \sum_{k=1}^{U} |R_k - E|,$$

22

## **Low-light enhancement**



| Learning                 | Methods           | LOL [82]     |       |        |               |             | VE-LOL-L [43] |       |                          |              | LoLi-Phone [37] |              |             |
|--------------------------|-------------------|--------------|-------|--------|---------------|-------------|---------------|-------|--------------------------|--------------|-----------------|--------------|-------------|
| Dearning                 |                   | PSNR ↑       | SSIM↑ | FID↓   | LOE↓          | PI↓         | <b>PSNR</b> ↑ | SSIM↑ | $\mathrm{FID}\downarrow$ | LOE↓         | PI↓             | LOE↓         | PI↓         |
|                          | LLNet [45]        | <u>17.91</u> | 0.76  | 169.20 | 384.21        | <u>4.10</u> | 17.38         | 0.73  | 124.98                   | 291.59       | <u>5.54</u>     | 343.34       | <u>5.36</u> |
|                          | LightenNet [39]   | 10.29        | 0.45  | 90.91  | 273.21        | 7.09        | 13.26         | 0.57  | 82.26                    | 199.45       | 7.29            | 500.22       | 6.63        |
|                          | Retinex-Net [82]  | 17.24        | 0.55  | 129.99 | 513.28        | 8.63        | 16.41         | 0.64  | 135.20                   | 421.41       | 8.62            | 542.29       | 8.23        |
| Supervised learning      | MBLLEN [47]       | 17.90        | 0.77  | 122.69 | 175.10        | 8.39        | 15.95         | 0.70  | 105.74                   | 114.91       | 7.45            | 137.34       | 6.46        |
| Supervised learning      | KinD [98]         | 17.57        | 0.82  | 74.52  | 377.59        | 7.41        | 18.07         | 0.78  | 80.12                    | 253.79       | 7.51            | 265.47       | 6.84        |
|                          | KinD++ [96]       | 17.60        | 0.80  | 100.15 | 712.12        | 7.96        | 16.80         | 0.74  | 101.23                   | 421.97       | 7.98            | 382.51       | 7.71        |
|                          | TBFEN [46]        | 17.25        | 0.83  | 90.59  | 367.66        | 8.29        | <u>18.91</u>  | 0.81  | 91.30                    | 276.65       | 8.02            | 214.30       | 7.34        |
|                          | DSLR [42]         | 14.98        | 0.67  | 183.92 | 272.68        | 7.09        | 15.70         | 0.68  | 124.80                   | 271.63       | 7.27            | 281.25       | 6.99        |
| Unsupervised learning    | EnlightenGAN [25] | 17.44        | 0.74  | 82.60  | 379.23        | 8.78        | 17.45         | 0.75  | 86.51                    | 311.85       | 8.27            | 373.41       | 7.26        |
| Self-supervised learning | DRBN [88]         | 15.15        | 0.52  | 94.96  | 692.99        | 5.53        | 18.47         | 0.78  | 88.10                    | 268.70       | 6.15            | 285.06       | 5.31        |
|                          | ExCNet [94]       | 16.04        | 0.62  | 111.18 | 220.38        | 8.70        | 16.20         | 0.66  | 115.24                   | 225.15       | 8.62            | 359.96       | 7.95        |
|                          | Zero-DCE [20]     | 14.91        | 0.70  | 81.11  | 245.54        | 8.84        | 17.84         | 0.73  | 85.72                    | 194.10       | 8.12            | 214.30       | 7.34        |
| Zara shat laarning       | Zero-DCE++ [38]   | 14.86        | 0.62  | 86.22  | 302.06        | 7.08        | 16.12         | 0.45  | 86.96                    | 313.50       | 7.92            | 308.15       | 7.18        |
| Zero-snot learning       | RRDNet [100]      | 11.37        | 0.53  | 89.09  | 127.22        | 8.17        | 13.99         | 0.58  | 83.41                    | 94.23        | 7.36            | 92.73        | 7.20        |
|                          | $GDP-x_t$         | 7.32         | 0.57  | 238.92 | 364.15        | 8.26        | 9.45          | 0.50  | 152.68                   | 194.49       | 7.12            | 508.73       | 8.06        |
|                          | $GDP-x_0$         | 13.93        | 0.63  | 75.16  | <u>110.39</u> | 6.47        | 13.04         | 0.55  | <u>78.74</u>             | <u>79.08</u> | 6.47            | <u>75.29</u> | 6.35        |

- GDP- $x_0$  fulfills the best FID, lightness order error (LOE), and perceptual index (PI) across all the zero-shot methods under three datasets.
- The lower LOE demonstrates better preservation for the naturalness of lightness, while the lower PI indicates better perceptual quality.

## **HDR image recovery**







Short

Deep-high-dynamic-range

## **HDR image recovery**



dynamic-range

| -                                | -             |       |                    |       |                                             |
|----------------------------------|---------------|-------|--------------------|-------|---------------------------------------------|
| Methods                          | <b>PSNR</b> ↑ | SSIM↑ | LPIPS $\downarrow$ | FID↓  |                                             |
| AHDRNet [86]                     | 18.72         | 0.58  | 0.39               | 81.98 | Long                                        |
| HDR-GAN [55]                     | 21.67         | 0.74  | 0.26               | 52.71 |                                             |
| Deep-HDR [84]                    | 21.66         | 0.76  | 0.26               | 57.52 |                                             |
| Deep-high-<br>dynamic_range [26] | 21.33         | 0.71  | 0.26               | 51.92 | Medium                                      |
| GDP- $x_t$                       | 19.36         | 0.65  | 0.30               | 63.89 | Short HDD CDM                               |
| $GDP-x_0$                        | 24.88         | 0.86  | 0.13               | 50.05 |                                             |
|                                  |               |       |                    |       |                                             |
|                                  |               |       |                    |       | HDR-GAN AHDRNet Deep-HDR Deep-high- Ours GT |

- HDR-GDP-x<sub>0</sub> exceeds the other methods in PSNR, SSIM, LPIPS, and FID.
- HDR-GDP-x<sub>0</sub> achieves a better quality of reconstructed images, where the low-light parts can be enhanced, and the over-exposure regions are adjusted.

## **Ablation Study**



| Task                                                                         | PSNR                                 | 4× Suj<br>SSIM              | per resolution<br>Consistency                | FID                   | PSNR                   | FID                        |                                              |                        |
|------------------------------------------------------------------------------|--------------------------------------|-----------------------------|----------------------------------------------|-----------------------|------------------------|----------------------------|----------------------------------------------|------------------------|
| $\frac{\text{GDP} - x_t}{\text{with } \Sigma}$                               | 22.86                                | 0.60                        | 88.37                                        | 68.04                 | 22.06                  | 0.57                       | 69.46                                        | 80.39                  |
| $egin{array}{c} { m GDP} \ {	extsf{-}} x_0 \ { m with} \ \Sigma \end{array}$ | 22.09                                | 0.58                        | 93.19                                        | 41.22                 | 23.49                  | 0.65                       | 68.67                                        | 50.29                  |
| $\operatorname{GDP}$ - $x_t$                                                 | 24.27                                | 0.67                        | 80.32                                        | 64.67                 | 25.86                  | 0.73                       | 54.08                                        | 5.00                   |
| GDP - $x_0$                                                                  | 24.42                                | 0.68                        | 6.49                                         | 38.24                 | 25.98                  | 0.75                       | 41.27                                        | 2.44                   |
|                                                                              |                                      |                             |                                              |                       |                        |                            |                                              |                        |
| Task                                                                         |                                      | 25%                         | Inpainting                                   |                       |                        | Co                         | lorization                                   |                        |
| Task                                                                         | PSNR                                 | 25%<br>SSIM                 | Inpainting<br>Consistency                    | FID                   | PSNR                   | Co<br>SSIM                 | lorization<br>Consistency                    | FID                    |
| Task<br>GDP - $x_t$<br>with $\Sigma$                                         | PSNR<br>25.28                        | 25%<br>SSIM<br>0.70         | Inpainting<br>Consistency<br>171.44          | FID<br>73.32          | PSNR<br>17.67          | Co<br>SSIM<br>0.70         | lorization<br>Consistency<br>246.26          | FID<br>145.20          |
| Task<br>$GDP - x_t$<br>with $\Sigma$<br>$GDP - x_0$<br>with $\Sigma$         | PSNR           25.28           24.58 | 25%<br>SSIM<br>0.70<br>0.75 | Inpainting<br>Consistency<br>171.44<br>65.59 | FID<br>73.32<br>22.77 | PSNR<br>17.67<br>21.28 | Co<br>SSIM<br>0.70<br>0.91 | lorization<br>Consistency<br>246.26<br>66.57 | FID<br>145.20<br>38.39 |

| Methods   |       |      | LOL    |        |      |       | NT   | IRE   |        |
|-----------|-------|------|--------|--------|------|-------|------|-------|--------|
| wiethous  | PSNR  | SSIM | FID    | LOE    | PI   | PSNR  | SSIM | LPIPS | FID    |
| Model A   | 11.05 | 0.49 | 156.51 | 707.57 | 8.61 | 24.12 | 0.67 | 0.32  | 86.69  |
| Model B   | 9.01  | 0.37 | 355.99 | 969.89 | 9.04 | 9.83  | 0.04 | 1.02  | 253.11 |
| $GDP-x_t$ | 7.32  | 0.57 | 238.92 | 364.15 | 8.26 | 19.36 | 0.65 | 0.30  | 63.89  |
| $GDP-x_0$ | 13.93 | 0.63 | 75.16  | 110.39 | 6.47 | 24.88 | 0.86 | 0.13  | 50.05  |



- **Fixed parameters**
- Model A is devised to naively restore the images from patches and patches where the parameters are not related.
- Model B is designed with fixed parameters for all patches in the images. 26

Model B Naïve restoration

HDR-GDP-x0

Model C

Fixed parameters

## Conclusion

 NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 上海人工智能実態室 Shangapone

(1) We introduce GDP, an effective and unsupervised posterior sampling method, for unified image restoration and enhancement.

(2) Our GDP is capable of optimizing the randomly initiated parameters of degradation that are unknown, resulting in a powerful GDP that can tackle any blind image restoration.
(3) Further, to achieve arbitrary size image generation, we propose hierarchical guidance and patch-based methods, greatly promoting the GDP on natural image enhancement.
(4) Moreover, the comprehensive experiments are carried out, different from the commonly utilized guidance way, where GDP directly predicts the temporary output given the noisy image in every step, which will be leveraged to guide the generation of images in the next step.





# Thanks for listening!