

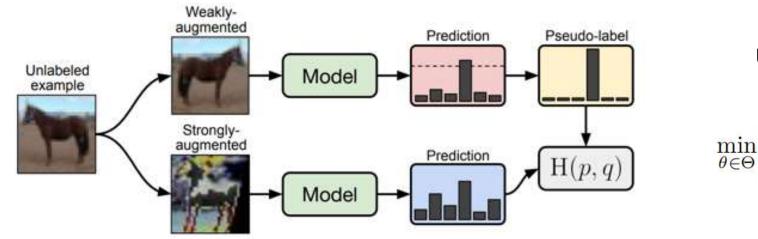
Towards Realistic Long-Tailed Semi-Supervised Learning: Consistency Is All You Need

Tong Wei, Kai Gan School of Computer Science and Engineering, Southeast University, Nanjing 210096, China {weit, gank}@seu.edu.cn

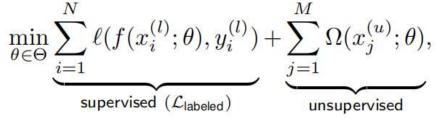
TUE-AM-330

Long-Tailed Semi-Supervised Learning (LTSSL)

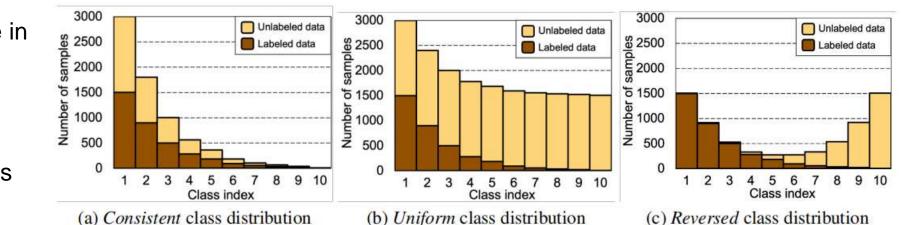
Common semi-supervised learning method: FixMatch



Labeled(Cross-entropy) + Unlabeled(Consistency regularization)



Three typical types of class distribution of unlabeled data



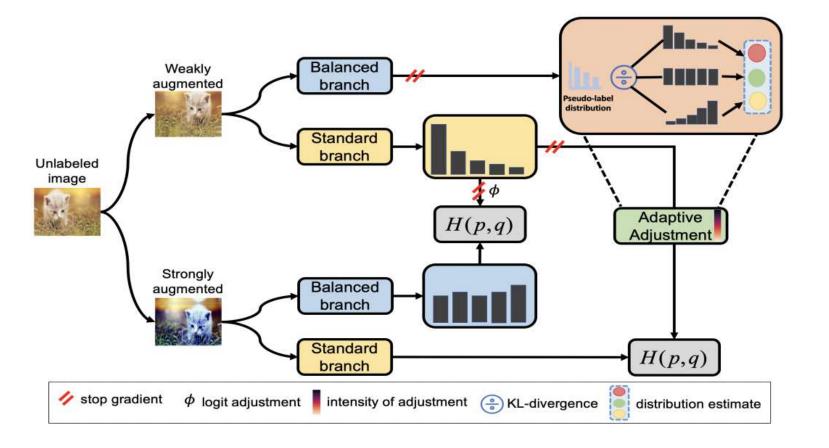
Recent progress on SSL has revealed promising performance in various tasks

However, most existing SSL algorithms assume the datasets are class-balanced

Adaptive Consistency Regularizer (ACR)

Two findings:

- 1) Pseudo-labels biased towards minority classes can benefit the classifier learning;
- 2) Pseudo-label distribution that approximates the true distribution helps learn better feature extractor.

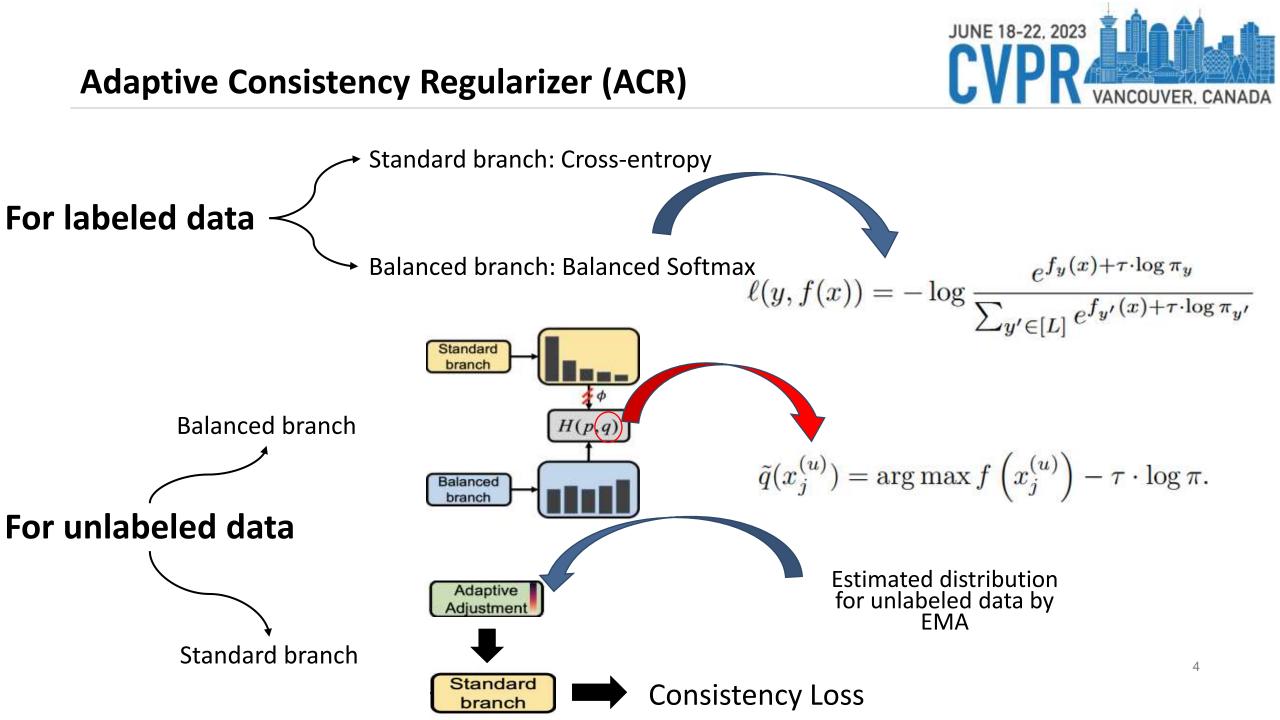


Balanced branch

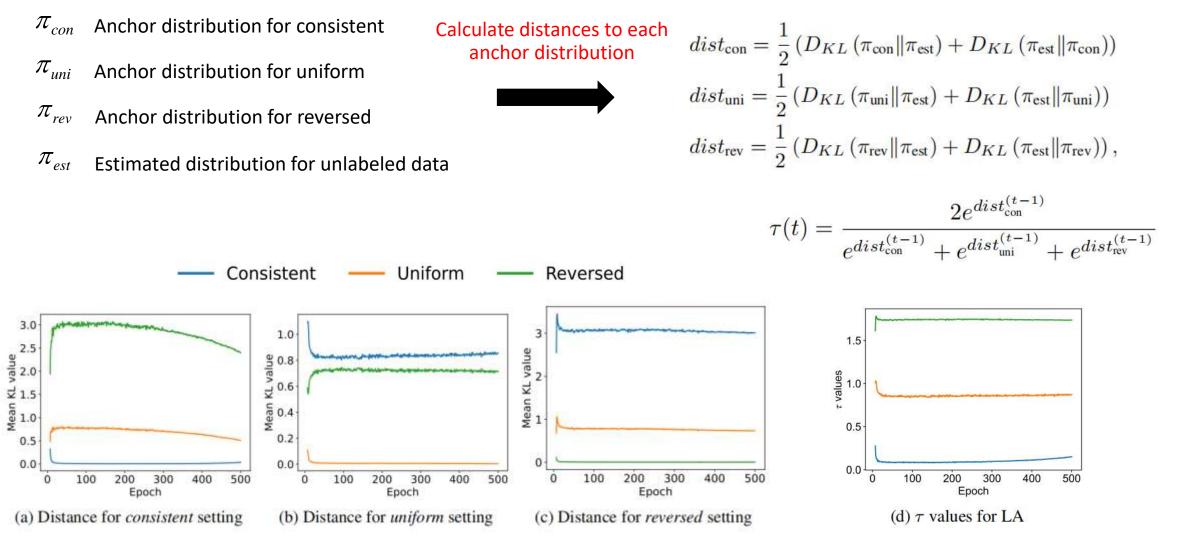
Adjust pseudo-labels appropriately biased toward the minority class via logit adjustment

Standard branch

Refine the original pseudo-labels to match the true class distribution of unlabeled data and enhance their accuracy ³



Adaptive Consistency Regularizer (ACR)



Sample mask generation

$$\mathcal{L}_{\text{b-con}} = \sum_{j=1}^{M} \tilde{M}(x_{j}^{(u)}) \ell\left(\tilde{f}(\mathcal{A}(x_{j}^{(u)})), \tilde{q}_{j_{\delta}}\right),$$
$$\tilde{M}(x_{j}^{(u)}) = \mathbb{I}\left(\max\left(\delta(\tilde{f}(x_{j}^{(u)}))\right) \ge \rho\right) \quad \lor$$
$$\mathbb{I}\left(\max\left(\delta(f(x_{j}^{(u)}) - \tau \cdot \log \pi)\right) \ge \rho\right),$$

$ ilde{M}(x_{j}^{(u)})$	Sample mask for $x_j^{(u)}$ in balanced branch
δ	Softmax function
\mathbb{I}	Indicator function
ho	Predefined threshold
π	Distribution of labeled data

In this way, we can

- (1) select more samples for the minority classes by considering the balanced branch's output;
- (2) obtain more confident samples through the newly constructed sample mask, which is beneficial for consistency loss to work.

	CIFAR10-LT				CIFAR100-LT				
	$\gamma = \gamma_l = \gamma_u = 100$		$\gamma = \gamma_l = \gamma_u = 150$		$\gamma = \gamma_l = \gamma_u = 10$		$\gamma = \gamma_l = \gamma_u = 20$		
1 A 1 5 5 5 1 5 1 5 5 5	$N_1 = 500$	$N_1 = 1500$	$N_1 = 500$	$N_1 = 1500$	$N_1 = 50$	$N_1 = 150$	$N_1 = 50$	$N_1 = 150$	
Algorithm	$M_1 = 4000$	$M_1 = 3000$	$M_1 = 4000$	$M_1 = 3000$	$M_1 = 400$	$M_1 = 300$	$M_1 = 400$	$M_1 = 300$	
Supervised	47.3 ± 0.95	61.9 ± 0.41	44.2 ± 0.33	58.2 ± 0.29	29.6 ± 0.57	46.9 ± 0.22	25.1 ± 1.14	41.2 ± 0.15	
w/ LA [22]	53.3 ± 0.44	53.3 ± 0.21	$49.5{\scriptstyle\pm0.40}$	67.1 ± 0.78	30.2 ± 0.44	48.7 ± 0.89	26.5 ± 1.31	$44.1{\scriptstyle~\pm 0.42}$	
FixMatch [29]	67.8±1.13	77.5±1.32	62.9 ± 0.36	72.4 ±1.03	45.2 ± 0.55	56.5 ±0.06	40.0 ± 0.96	50.7 ±0.25	
w/ DARP [14]	74.5 ± 0.78	77.8 ± 0.63	67.2 ± 0.32	73.6 ± 0.73	49.4 ± 0.20	58.1 ± 0.44	43.4 ± 0.87	52.2 ± 0.66	
w/ CReST+ [34]	76.3 ± 0.86	78.1 ± 0.42	67.5 ± 0.45	73.7 ±0.34	44.5 ± 0.94	57.4 ± 0.18	40.1 ± 1.28	52.1 ± 0.21	
w/ DASO [25]	76.0 ± 0.37	79.1 ± 0.75	70.1 ± 1.81	75.1 ±0.77	49.8 ± 0.24	59.2 ± 0.35	43.6 ± 0.09	$52.9{\scriptstyle\pm0.42}$	
FixMatch+LA [22]	75.3 ± 2.45	82.0 ± 0.36	67.0 ± 2.49	78.0 ±0.91	47.3 ± 0.42	58.6±0.36	41.4 ± 0.93	$53.4{\scriptstyle\pm0.32}$	
w/ DARP [14]	76.6±0.92	80.8 ± 0.62	68.2 ± 0.94	76.7 ±1.13	50.5 ± 0.78	$59.9{\scriptstyle\pm0.32}$	44.4 ± 0.65	$53.8{\scriptstyle\pm0.43}$	
w/ CReST+ [34]	76.7 ±1.13	81.1 ± 0.57	70.9 ± 1.18	77.9 ± 0.71	$44.0{\scriptstyle\pm0.21}$	57.1 ± 0.55	40.6 ± 0.55	52.3 ± 0.20	
w/ DASO [25]	77.9 ± 0.88	82.5 ± 0.08	70.1 ± 1.68	79.0 ± 2.23	50.7 ± 0.51	60.6 ± 0.71	44.1 ± 0.61	55.1 ± 0.72	
FixMatch+ABC [18]	78.9 ± 0.82	83.8 ± 0.36	66.5 ± 0.78	80.1 ± 0.45	47.5 ± 0.18	59.1 ±0.21	41.6 ± 0.83	53.7 ± 0.55	
w/ DASO [25]	80.1 ± 1.16	$83.4{\scriptstyle\pm0.31}$	70.6 ± 0.80	80.4 ±0.56	$50.2{\scriptstyle\pm0.62}$	$60.0{\scriptstyle\pm 0.32}$	44.5 ± 0.25	55.3 ± 0.53	
FixMatch w/ ACR (ours)	81.6±0.19	84.1 ±0.39	77.0±1.19	80.9 ±0.22	55.7 ±0.12	65.6±0.16	48.0±0.75	58.9 ±0.36	

Test accuracy for consistent setting

ACR outperforms all algorithms even though most these methods are particularly developed based on the assumption that labeled and unlabeled data share the same class distribution

Test accuracy for inconsistent settings

		CIFAR10-LT ($\gamma_l \neq \gamma_u$)				STL10-LT ($\gamma_u = N/A$)				
	$\gamma_u = 1$ (uniform)		$\gamma_u = 1/100 \text{ (reversed)}$		$\gamma_l = 10$		$\gamma_l = 20$			
Algorithm	$N_1 = 500$ $M_1 = 4000$	$N_1 = 1500$ $M_1 = 3000$	$N_1 = 500$ $M_C = 4000$	$N_1 = 1500$ $M_C = 3000$	$N_1 = 150$ $M = 100k$	$N_1 = 450$ $M = 100k$	$N_1 = 150$ $M = 100k$	$N_1 = 450$ $M = 100k$		
FixMatch [29]	73.0±3.81	81.5±1.15	62.5 ± 0.94	71.8 ± 1.70	56.1±2.32	72.4 ±0.71	47.6±4.87	64.0 ± 2.27		
w/ DARP [14]	82.5 ± 0.75	84.6 ± 0.34	70.1 ± 0.22	80.0 ± 0.93	66.9 ± 1.66	75.6 ±0.45	$59.9{\scriptstyle\pm2.17}$	72.3 ± 0.60		
w/ CReST [34]	83.2 ± 1.67	87.1 ± 0.28	70.7 ± 2.02	80.8 ± 0.39	61.7 ± 2.51	71.6 ±1.17	57.1±3.67	$68.6 {\pm} 0.88$		
w/ CReST+ [34]	82.2 ± 1.53	86.4 ± 0.42	62.9 ± 1.39	72.9 ± 2.00	61.2 ± 1.27	71.5 ±0.96	56.0±3.19	68.5 ± 1.88		
w/ DASO [25]	86.6 ± 0.84	88.8 ± 0.59	71.0 ± 0.95	80.3 ± 0.65	70.0 ± 1.19	78.4 ± 0.80	65.7±1.78	75.3 ± 0.44		
w/ ACR (ours)	92.1 ±0.18	93.5 ±0.11	85.0 ±0.09	89.5 ±0.17	77.1 ±0.24	83.0 ±0.32	75.1 ±0.70	81.5±0.25		

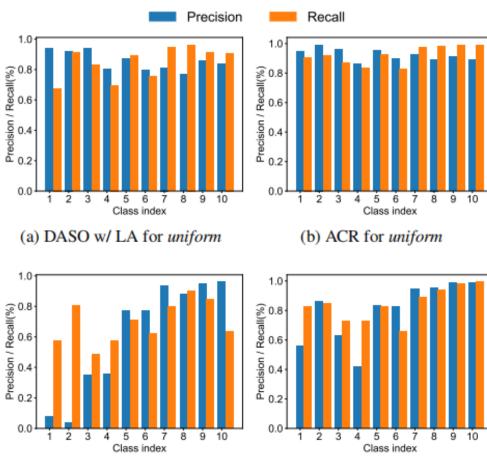
	CIFAR100-LT ($\gamma_l \neq \gamma_u$)							
12	$\gamma_u = 1$ (uniform)	$\gamma_u = 1/10$ (reversed)					
Algorithm	$N_1 = 50$ $M_1 = 400$	$N_1 = 150$ $M_1 = 300$	$N_1 = 50$ $M_C = 400$	$N_1 = 150$ $M_C = 300$				
FixMatch [29]	45.5 ±0.71	58.1 ±0.72	44.2 ± 0.43	57.3±0.19				
w/DARP[14]	43.5 ± 0.95	55.9 ± 0.32	36.9 ± 0.48	51.8 ± 0.92				
w/CReST [34]	43.5 ± 0.30	59.2 ±0.25	39.0±1.11	56.4 ± 0.62				
w/CReST+ [34]	43.6 ± 1.60	58.7 ± 0.16	39.1 ± 0.77	56.4 ± 0.78				
w/DASO [25]	53.9 ± 0.66	61.8 ± 0.98	51.0±0.19	60.0 ± 0.31				
w/ ACR (ours)	66.0 ±0.25	73.4 ±0.22	57.0±0.46	67.6±0.12				

Test accuracy on ImageNet-127

Algorithm	32×32	64×64
FixMatch [29]	29.7	42.3
w/ DARP [14]	30.5	42.5
w/DARP+cRT [14]	39.7	51.0
w/ CReST+ [34]	32.5	44.7
w/ CReST++LA [22]	40.9	55.9
w/CoSSL [9]	43.7	53.9
w/ TRAS [35]	46.2	54.1
w/ ACR (ours)	57.2	63.6

(c) DASO w/ LA for reversed

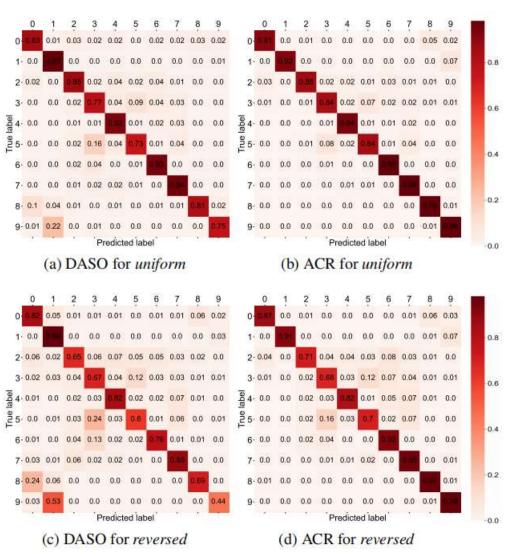
The precision and recall of pseudo-labels



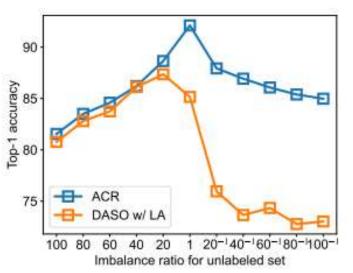
(d) ACR for reversed

9

Confusion matrices



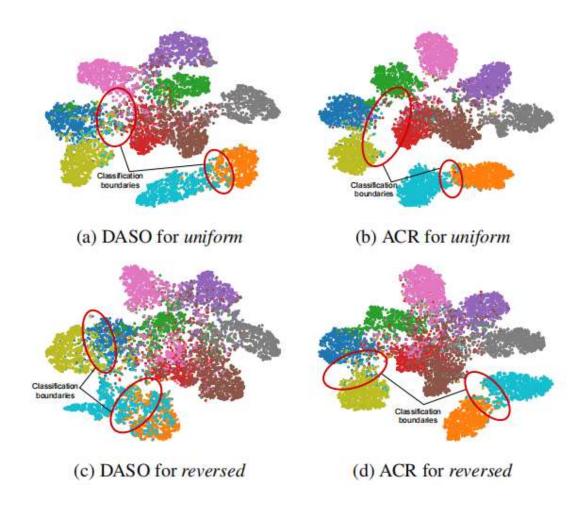
More settings:



Ablation studies:

Ablations	CI	FAR10-	CIFAR100-LT			
<i>i</i> blutons	Con	Uni	Rev	Con	Uni	Rev
ACR(ours)	81.6	92.1	85.0	55.7	66.0	57.0
w/o sample mask principle	81.7	91.1	84.6	55.0	63.7	55.0
w/o adaptive LA	76.8	92.4	85.1	53.5	62.8	56.1
w/o LA for balanced branch	74.3	90.6	83.5	54.5	66.2	56.7
w/o balanced softmax	76.7	93.0	84.8	55.3	65.6	57.3
w/o gradients from balanced branch	73.7	92.3	85.2	54.3	65.2	56.7
w/o labeled data in unlabeled set	81.0	92.7	79.9	56.1	66.4	56.8

The t-SNE visualization:



Conclusion

We presents a simple and effective method by minimizing the adaptive consistency regularizer (ACR) for long-tailed semi-supervised learning with unknown class distributions of the unlabeled data.

- Benefit classifier learning by generating pseudo-labels that are properly biased towards minority classes.
- Benefit representation learning by generating pseudo-labels whose distribution approximates the true class distribution.

