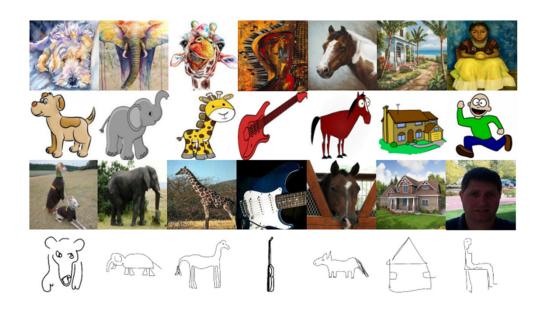


Feature Alignment and Uniformity for Test Time Adaptation

Shuai Wang¹, Daoan Zhang², Zipei Yan³, Jianguo Zhang², Rui Li¹

¹ Tsinghua University
 ² Southern University of Science and Technology
 ³ Hongkong Polytechnic University

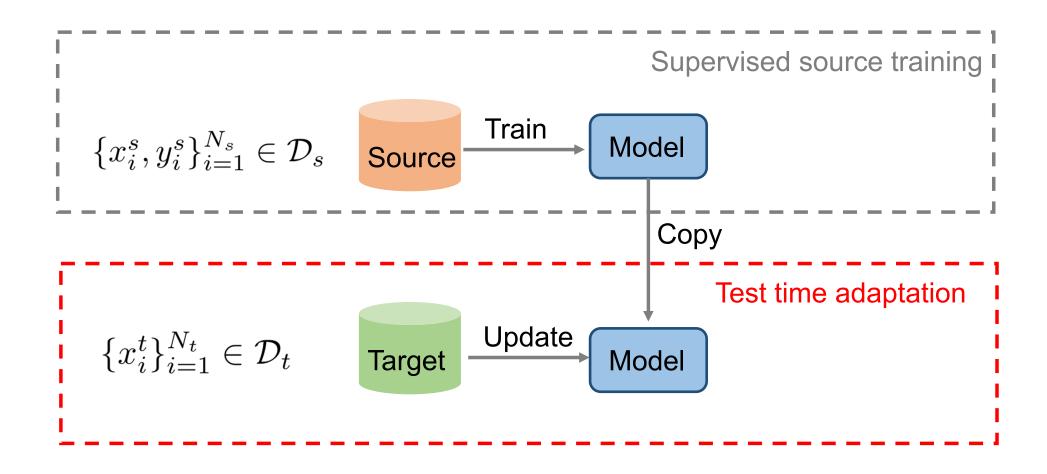

Presentation data: June 22, 2023

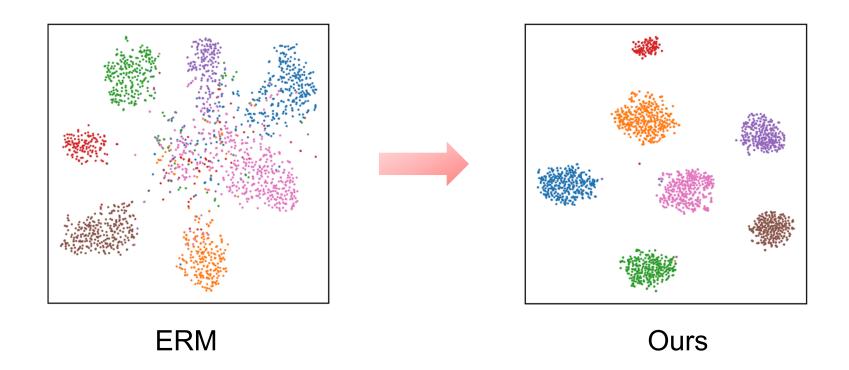
#Poster: 339 Tag: THU-AM-339

Highlight

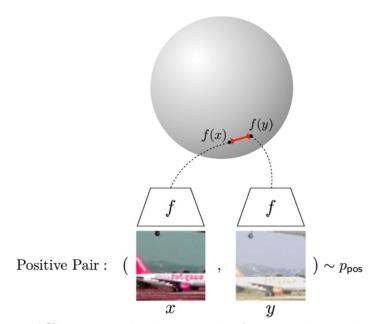
- ✓ The challenging but practical problem: test time adaptation (TTA)
- ✓ A new perspective for TTA: feature alignment and uniformity
- √ Two complementary strategies: TSD and MSLC
- ✓ SOTA performance on multiple datasets

Domain Shift in Real World



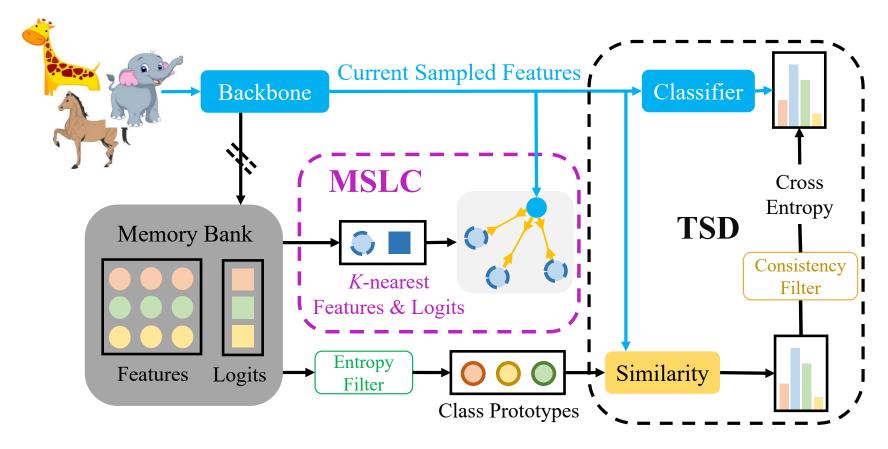

PACS [1]

DomainNet [2]


Test Time Adaptation

Revise Target Feature

Feature Alignment and Uniformity



Alignment: Similar samples have similar features.

Uniformity: Preserve maximal information.

Overview of Proposed Method

Test Time Self-Distillation (TSD) for feature uniformity

Memorized Spatial Local Clustering (MSLC) for feature alignment

Main Results

ResNet18

Method	PACS	OfficeHome	VLCS	DomainNet	Avg.
ERM [63]	82.07	63.12	72.75	38.95	64.22
BN [53]	82.82	62.30	64.31	37.80	61.81
Tent [66]	84.92	63.75	67.36	38.95	63.75
PL [30]	84.64	60.22	68.93	35.23	62.26
SHOT-IM [36]	82.55	63.42	64.90	39.50	62.59
T3A [22]	83.50	64.25	73.03	39.61	65.10
ETA [45]	82.70	62.46	64.35	39.43	62.24
LAME [5]	84.58	62.20	72.88	37.49	64.29
Ours	87.32	64.83	73.61	40.19	66.49

ResNet50

Method	PACS	OfficeHome	VLCS	DomainNet	Avg.
ERM [63]	84.59	67.37	74.01	45.20	67.74
BN [53]	85.03	66.10	64.78	43.38	64.82
Tent [66]	87.48	67.96	69.20	44.71	67.34
PL [30]	85.23	67.13	68.52	41.18	65.52
SHOT-IM [36]	85.50	67.39	65.23	46.30	66.11
T3A [22]	86.04	68.29	73.98	46.16	68.62
ETA [45]	85.04	66.21	64.79	46.13	65.54
LAME [5]	86.62	66.19	73.94	43.20	67.49
Ours	89.41	68.67	74.52	47.73	70.08

Results on different networks

Backbones	PACS	OfficeHome	VLCS
ResNet18 [17]	82.07	63.12	72.75
+Ours	87.32	64.83	73.61
ResNet50 [17]	84.59	67.37	74.01
+Ours	89.41	68.67	74.52
ResNeXt-50 [69]	86.67	72.66	78.50
+Ours	91.33	74.18	79.38
ViT-B/16 [11]	87.13	79.06	78.70
+Ours	90.20	81.80	79.90
EfficientNet-B4 [58]	85.11	74.65	77.14
+Ours	85.41	72.24	79.42
Mixer-L16 [59]	84.59	71.36	76.53
+Ours	88.47	74.82	79.75

Thanks for your attention

ArXiv

Code