

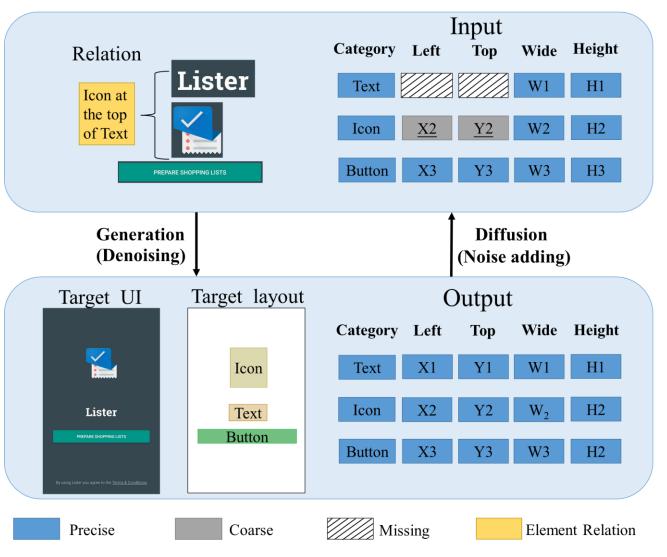
Unifying Layout Generation with a Decoupled Diffusion Model

Mude Hui^{1*} Zhizheng Zhang² Xiaoyi Zhang² Wenxuan Xie² Yuwang Wang³ Yan Lu² ¹Xi'an Jiaotong University ²Microsoft Research Asia ³Tsinghua University

Poster ID: TUE-AM-185

- We present that various layout generation subtasks can be comprehensively unified with a single diffusion model.
- We propose the *Layout Diffusion Generative Model (LDGM)*, which allows parallel decoupled diffusion processes for different attributes and a joint denoising process for generation with sufficient global message passing and context exploitation. It conforms to the characteristics of layouts and achieves high generation qualities.
- Extensive qualitative and quantitative experiment results demonstrate that our proposed scheme outperforms existing layout generation models in terms of the functionality and performance on different benchmark datasets.

Background



Manual Layout Designs:

- Time-consuming
- Requiring expertise in design

AI-based Layout Generation:

- Diverse demands (versatility)
- Aesthetics & practicality

Generic Settings

W M

W

W

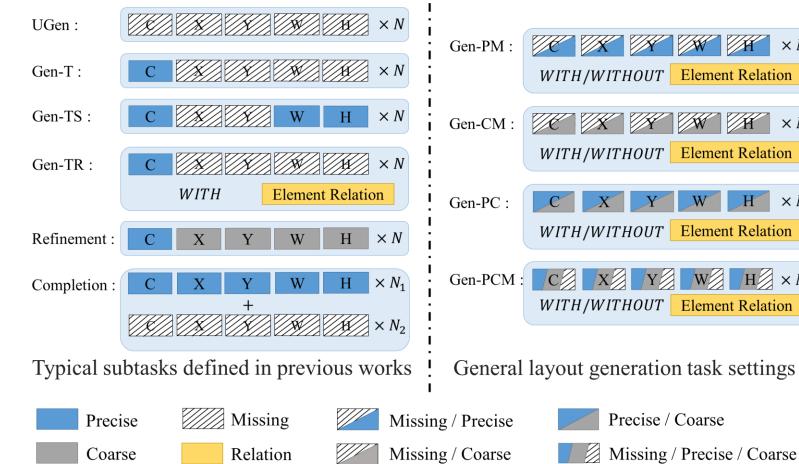
Y

 $\times N$

 $\times N$

 $\times N$

 $|\mathbf{H}| \times N$


H

U-Gen: unconditional generation **Gen-T:** conditioned on types **Gen-TS:** conditioned on types & sizes **Gen-TR:** conditioned on types & relations **Refinement:** update coarse attributes **Completion:** generate missing attributes

P: Precise (attributes)

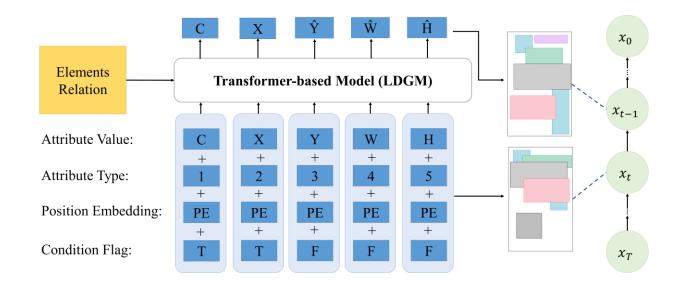
M: Missing (attributes)

C: Coarse (attributes)

Missing / Precise / Coarse

Precise / Coarse

Method


Unification with Diffusion Modelling

The process from a completed layout to fully corruption. \rightarrow A diffusion process.

> Layout formulation:

$$\boldsymbol{l} = [c_1, x_1, y_1, w_1, h_1, c_2, x_2, y_2, \cdots, h_N, \mathcal{E}]$$

> Framework:

Method

Decoupled Diffusion (Training)

```
Algorithm 1 Training of the LDGM
Require: Transition matrices \{Q_t^c, Q_t^p, Q_t^s\}, initial net-
      work parameters \theta, loss weight \lambda, and learning rate \eta.
 1: repeat
           l \leftarrow sample a layout from the training set
  2:
           timsteps = zeros(len(l)) \triangleright Record t of attributes.
  3:
           \hat{l} = \text{RandSelect}(l) \triangleright \text{Select attributes for diffusion.}
  4:
           \hat{l} = [C, P, S]
                                          \triangleright Group \hat{l} upon the semantics.
  5:
           for g in [C, P, S] do
  6:
                 sample t \sim \text{Uniform}(\{1, \cdots, T\})
 7:
                 for x in q do
  8:
                      timsteps[x.index] = t
  9:
                      x = x_t \leftarrow \text{sample from } q(x_t | x_0) \triangleright \text{Eqn. 2}
 10:
                 end for
11:
 12:
           end for
           \mathcal{L}_x = \begin{cases} \lambda \mathcal{L}_{rec}, & \text{if } timsteps[x.index] = 0\\ \mathcal{L}_0, & \text{if } timsteps[x.index] = 1 \end{cases}
13:
                                   otherwise
           \mathcal{L} = \sum_{x \in l} \mathcal{L}_x
14:
                                          ▷ Update network parameters.
           \theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}
 15:
 16: until converged
```

Different attributes have their own semantics.

Core idea: "Decouple First Diffusion Then".

- For category c , we adopt noises of a uniform distribution for its diffusion.
- For position (x, y) and size (w, h), we adopt discretized Gaussian noises for their diffusion.

Method

A Joint Denoising Process (Generation Inference)

Algorithm 2 Inference of the LDGM

- **Require:** Initial layout l_T , condition flags, and maximum denoising steps T.
- 1: $\boldsymbol{l}_T \leftarrow \text{tokenize } \boldsymbol{l}_T \text{ with condition flags}$
- 2: $l_T^m \leftarrow \text{GetMiss}(l_T) \triangleright \text{Get missing attributes from } l_T$.
- 3: $N_m \leftarrow len(\boldsymbol{l}_T^m)$
- 4: $k \leftarrow \lceil N_m/T \rceil$

5: **for**
$$t = T, \dots, 1$$
 do

- 6: $p_{\theta}(\boldsymbol{l}_{t-1}|\boldsymbol{l}_t) = LDGM(\boldsymbol{l}_t)$
- 7: $\boldsymbol{l}_{t-1}, \boldsymbol{p}_{t-1} \leftarrow \text{sample from } p_{\theta}(\boldsymbol{l}_{t-1} | \boldsymbol{l}_t)$
- 8: **if** $N_m > 0$ **then**
- 9: $\boldsymbol{l}_{t-1}^m, \boldsymbol{p}_{t-1}^m \leftarrow \text{GetMiss}(\boldsymbol{l}_{t-1}, \boldsymbol{p}_{t-1})$ 10: $\boldsymbol{l}_{t-1}^m \leftarrow \text{Top-}k\text{Keep}(\boldsymbol{l}_{t-1}^m, \boldsymbol{p}_{t-1}^m)$
- 11: $N_m \leftarrow N_m k$
- 12: **end if**
- 13: **end for**
- 14: **return** *l*₀

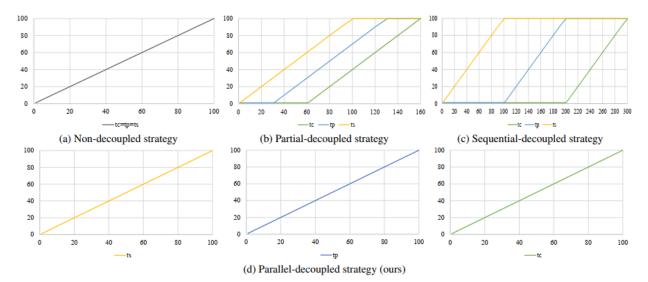
Handling different attributes of Precise/Missing/Coarse statuses all in one.

- **GetMiss()** refers to an operation of splitting the missing attributes from the entire attribute set.
- **Top-***k***Keep()** refers to an operation of preserving the predicted results of missing attributes with top-k high confidences and re-mark the remaining ones as absorbing status until all missing attributes are predicted.

Comparison with SOTAs

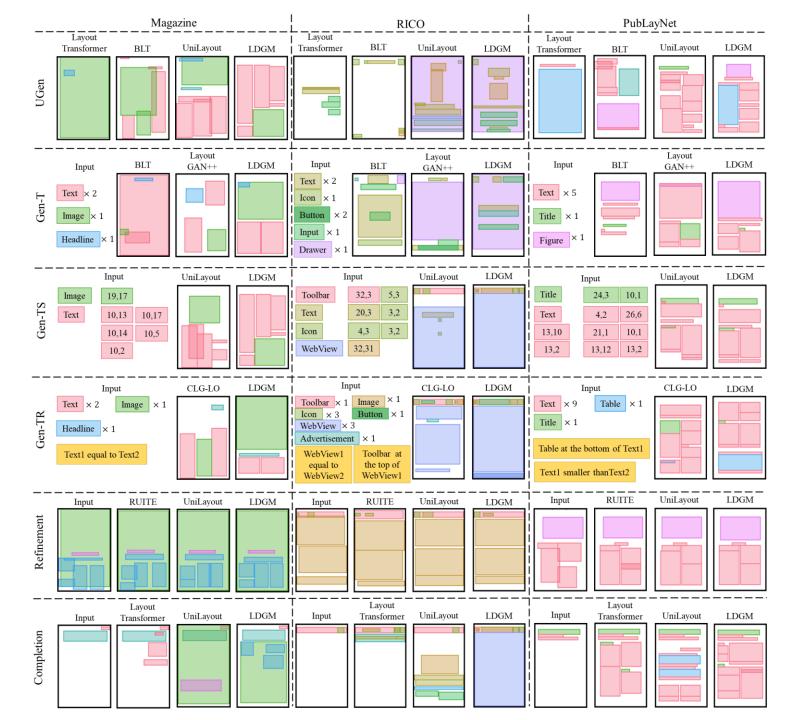
	Subtasks	Methods	Magazine			Rico				PubLayNet				
			MaxIoU ↑	$\mathrm{FID}\downarrow$	Align.↓	Overlap↓	MaxIoU ↑	$\mathrm{FID}\downarrow$	Align. \downarrow	Overlap↓	MaxIoU ↑	$\mathrm{FID}\downarrow$	Align. \downarrow	Overlap \downarrow
	U-Gen	LayoutTrans. [7]	0.18	47.84	0.59	47.98	0.46	46.64	0.66	64.10	0.32	49.72	0.37	36.63
		BLT [13]	0.20	44.91	0.55	55.56	0.51	33.81	0.59	67.33	0.34	48.24	0.27	42.79
		UniLayout [9]	0.31	36.61	0.49	44.50	0.62	26.68	0.40	59.26	0.33	32.29	0.22	22.19
		LDGM (Ours)	0.38	32.73	0.47	46.43	0.62	26.06	0.36	56.35	0.46	25.94	0.25	19.83
	Gen-T	LayoutGAN++ [12]	0.26	36.35	0.54	58.44	0.46	34.43	0.58	59.85	0.36	30.48	0.19	32.80
		BLT [13]	0.22	48.26	0.69	64.01	0.44	39.64	0.57	56.83	0.37	44.86	0.21	38.21
		UniLayout [9]	0.32	28.37	0.51	53.56	0.55	18.06	0.48	57.92	0.41	27.34	0.20	20.98
		LDGM (Ours)	0.36	24.67	0.45	45.11	0.58	16.64	0.39	55.87	0.44	20.69	0.15	16.88
	Gen-TS	BLT [13]	0.33	22.72	0.59	61.94	0.51	42.88	0.46	57.74	0.40	24.32	0.16	31.06
		UniLayout [9]	0.35	19.35	0.58	56.43	0.55	20.42	0.49	58.72	0.43	27.47	0.16	23.82
\int		LDGM (Ours)	0.37	17.65	0.45	44.25	0.62	12.59	0.35	55.92	0.47	19.02	0.16	10.09
	Gen-TR	CLG-LO [12]	0.27	33.88	0.59	59.43	0.38	38.89	0.54	56.51	0.38	31.87	0.21	34.39
		UniLayout [9]	0.36	19.24	0.54	49.61	0.57	26.38	0.46	66.93	0.46	27.73	0.17	27.35
		LDGM (Ours)	0.39	20.58	0.48	47.27	0.61	16.98	0.39	58.75	0.44	19.54	0.16	21.28
	Refinement	RUITE [24]	0.24	44.27	0.64	54.26	0.46	36.70	0.57	64.13	0.32	41.72	0.49	35.74
		UniLayout [9]	0.33	19.78	0.49	49.02	0.56	24.41	0.42	56.04	0.44	22.34	0.11	27.23
		LDGM (Ours)	0.39	14.95	0.42	37.22	0.62	13.19	0.33	52.17	0.48	15.28	0.10	13.05
	Completion	LayoutTrans. [7]	0.17	39.36	0.67	55.32	0.46	36.15	0.66	67.10	0.32	41.72	0.37	39.81
		UniLayout [9]	0.23	28.78	0.52	46.43	0.59	25.18	0.45	55.99	0.41	32.04	0.19	22.90
		LDGM (Ours)	0.38	24.35	0.49	39.26	0.60	16.42	0.36	53.15	0.44	25.31	0.10	19.45
C	Gen-PM	LDGM (Ours)	0.38	27.33	0.47	39.02	0.58	21.64	0.38	56.56	0.46	23.58	0.10	14.11
J	Gen-CM		0.37	28.74	0.51	43.25	0.57	26.15	0.38	57.74	0.44	24.94	0.11	16.26
	Gen-PC		0.37	22.56	0.47	42.95	0.60	18.13	0.36	53.67	0.50	16.42	0.09	12.51
C	Gen-PCM		0.37	24.45	0.49	44.41	0.59	21.59	0.40	54.77	0.42	25.76	0.14	19.68
	GT	-	0.41	9.89	0.43	34.27	0.66	7.05	0.26	49.86	0.64	9.38	0.008	5.18

Generation tasks supported by previous tasks.

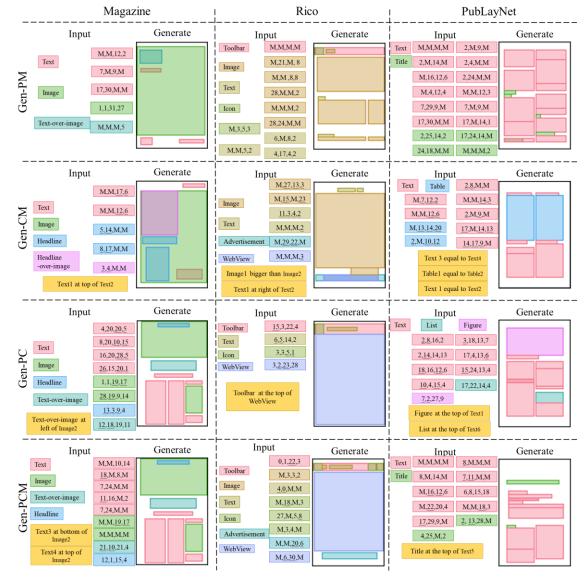

More generic generation tasks supported by ours.

Ablation Studies

Effectiveness of our proposed decoupled corruption strategy:


Model	MaxIoU ↑	$\mathrm{FID}\downarrow$	Align. \downarrow	Overlap↓
Non-decoupled	0.56	29.24	0.43	60.04
Partial	0.57	27.71	0.48	54.24
Sequential	0.56	26.69	0.43	57.17
Parallel (Ours)	0.59	21.59	0.40	54.77

> Effectiveness of our proposed inference strategy:


Model	MaxIoU ↑	$\mathrm{FID}\downarrow$	Align. \downarrow	Overlap↓
AutoReg	0.60	23.16	0.42	56.87
Non-AutoReg	0.57	25.14	0.44	58.63
Ours	0.59	21.59	0.40	54.77

Visualization

Visualization

Thank You!