

THU-AM-101

Neural Map Prior for Autonomous Driving

Yilun Wang²

Hang Zhao^{2,1}

¹Shanghai Qi Zhi Institute ²IIIS, Tsinghua University ³MIT

Challenging weather like rain makes online HD map predictions harder

Remember the road from previous trips through the same area on sunny days

Neural Map Prior (NMP): A novel hybrid mapping

Neural Map Prior (NMP): A novel hybrid mapping

Neural Map Prior (NMP): A novel hybrid mapping

 Image: Contract of the second seco

Input: Posed Images

Onboard sensors: Surround-view cameras, GPS/IMU

Output: BEV Semantic Map

Evaluation Metrics

Mean Intersection-over-union (mIoU) Measure semantic-level.

Mean Average Precision (mAP) Measure instance-level.

NMP helps online map inference

NMP improves map segmentation and detection performance
NMP can be applied to other map learning frameworks

Model	mIoU				Model	Average Precision			
	Divider	Crossing	Boundary	All	All	$AP_{Divider}$	$AP_{Crossing}$	$AP_{Boundary}$	mAP
HDMapNet	41.04	16.23	40.93	32.73	VectorMapNet + NMP	47.3	36.1 42 9	39.3 41 9	40.9 44 8
HDMapNet + NMP	44.15	20.95	46.07	37.05	$\triangle AP$	+2.3	+6.8	+2.6	+3.9
\triangle mIoU	+3.11	+4.72	+5.14	+4.32					
LSS	45.19	26.90	47.27	39.78					
LSS + NMP	50.20	30.66	53.56	44.80					
\triangle mIoU	+5.01	+3.76	+6.29	+5.02					
BEVFormer	49.51	28.85	50.67	43.01					
BEVFormer + NMP	55.01	34.09	56.52	48.54					
\triangle mIoU	+5.50	+5.24	+5.95	+5.53					

NMP helps online map inference

Lift-Splat-shoot: https://arxiv.org/abs/2008.05711

NMP helps online map inference

NMP helps to see further

Model performance improvement(+IoU) vs distance(m) +IoU (30m x 60m)

NMP helps in bad weathers

NMP provides more significant improvements in rain and night driving conditions

Waathar		mIoU				
weather	+ 111111	Divider	Crossing	Boundary	All	
Rain	Х	50.25	26.90	44.54	40.56	
	\checkmark	54.64	30.62	54.19	46.48	
$\overline{\bigtriangleup} \mathbf{m} \mathbf{l} \mathbf{o} \mathbf{U}^{-}$		+4.39	+3.72	+9.65	+5.92	
Night	Х	51.02	21.17	48.99	40.39	
	\checkmark	54.66	33.78	55.92	48.12	
$\overline{\bigtriangleup} \mathbf{m} \mathbf{l} \mathbf{o} \mathbf{U}^{-}$		+3.64	+12.61	+6.93	+7.73	
NightRain	Х	55.76	00.00	47.60	34.45	
	\checkmark	61.22	00.00	50.84	37.35	
$\overline{\bigtriangleup} \mathbf{m} \mathbf{l} \mathbf{o} \mathbf{U}^{-}$		+5.46		+3.24	+2.90	
Normal	Х	49.27	29.49	52.11	43.62	
	\checkmark	53.46	35.27	57.75	48.82	
$\overline{\bigtriangleup} \mathbf{m} \mathbf{l} \mathbf{o} \mathbf{U}^{-}$		+4.19	+5.78	+5.64	+5.20	

NMP helps in bad weathers

NMP helps in bad weathers

Generalization

NMP can alleviate the poor generalization problem in map learning to a certain extent

Data Split		mIoU				
Data Split		Divider	Crossing	Boundary	All	
Docton Split	Х	26.35	15.32	25.06	22.24	
Boston Split	\checkmark	33.04	21.72	32.63	29.13	
¯∆¯mĪoŪ¯¯¯		+6.69	+6.40	+7.57	+6.89	
Original Salit	Х	49.51	28.85	50.67	43.01	
Original Split	\checkmark	55.01	34.09	56.52	48.54	
$\overline{\bigtriangleup} m \overline{I} o \overline{U}^{}$		+5.50	+5.24	+5.95	+5.53	

Tiling is a common technique utilized on a variety of digital platforms

- Geographic Information Systems (GIS)
- Digital Mapping Services (such as Google Maps and Bing Maps)
- Reduces memory requirements therefore less communication overhead

Neural Map Prior Summary

- Project Page: <u>https://tsinghua-mars-lab.github.io/neural_map_prior/</u>
- Paper Link: <u>https://arxiv.org/pdf/2304.08481.pdf</u>
- ✓ Improves the ability to deal with occlusions and bad weather
- ✓ Provides perception beyond the visible range
- ✓ Enables continuous map updating and refinement