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Overview

We propose a MOT algorithm by improving SORT’s limitations.
1. Simple: no training required, a pure filtering-based method.
2. Effective: state-of-the-art on multiple MOT benchmarks1.
3. Efficient: Run at >500FPS on a single CPU2.

1: With YOLO-X as the detector.

2: Tested on KITTI dataset.
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Motivation

SORT[1] applies Kalman filter for multi-object tracking under the 
assumption of linear motion. 
• Works well only when video frame rate is high and consistent

measurement is provided.
• Fails when measurement is missing during a time interval, when 

Kalman filter propagates state estimates by linear motion assumption.

[1] Bewley, Alex, et al. "Simple online and realtime tracking." 2016 IEEE 
international conference on image processing (ICIP). IEEE, 2016.
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Preliminary: SORT

• Tracking-by-detection: works with an off-the-shelf detector.
• Detector provides an observation/measurement of target states and 

Kalman filter provides an estimate following linear motion assumption.
• Determines posteriori state estimate by combing the two states.
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When observation is missing:



Why SORT fails

• Sensitive to State Noise: on  high-frame-rate videos, the variance of 
velocity is significant even with tiny position variance.
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Why SORT fails

• Sensitive to State Noise: on  high-frame-rate videos, the variance of 
velocity is significant even with tiny position variance.
• Temporal Error Magnification: without observation, the state noise

can’t be corrected will is accumulated to distort the KF parameters.
• Being Estimation-Centric: SORT fails as it trusts the priori estimations 

even when it can’t be trusted anymore. 
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Proposed method: OC-SORT

Key idea: leverage the observation to avoid the error accumulated in KF 
parameters when KF propagates without observations.
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OC-SORT: Architecture

Two main components upon SORT:
1. Observation-centric Re-Update (ORU)
2. Observation-Centric Momentum (OCM)
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Observation-centric Re-Update (ORU)

After re-association with an observation, re-update KF parameters:
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Observation-Centric Momentum (OCM)

Linear motion assumption includes not just linear position sequence 
but also consistent velocity. OCM adds the velocity consistency into the 
cost function for association.
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Experiments
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OC-SORT v.s. SORT
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Demo
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https://www.youtube.com/watch?v=qv6gl4h0dvg
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