THU-AM-276

Open-set Fine-grained Retrieval via Prompting Vision-Language Evaluator

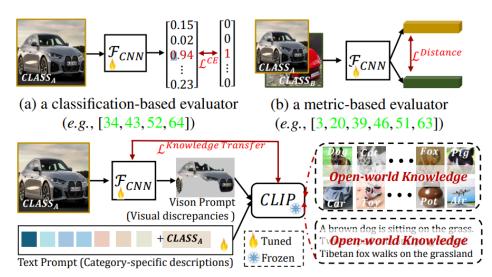
Shijie Wang¹, Jianlong Chang², Haojie Li^{1,3}*, Zhihui Wang¹, Wanli Ouyang⁴, Qi Tian²

¹International School of Information Science & Engineering, Dalian University of Technology, China

² Huawei Cloud & AI, China

³College of Computer and Engineering, Shandong University of Science and Technology, China ⁴ Sense Time Computer Vision Research Group, The University of Sydney, Australia

Motivation



(c) a vision-language evaluator with open-world knowledge

Problem

Current works focus on close-set visual concepts, where all the subcategories are pre-defined, and make it hard to capture discriminative knowledge from unknown subcategories, consequently failing to handle unknown subcategories in open-world scenarios.

Method

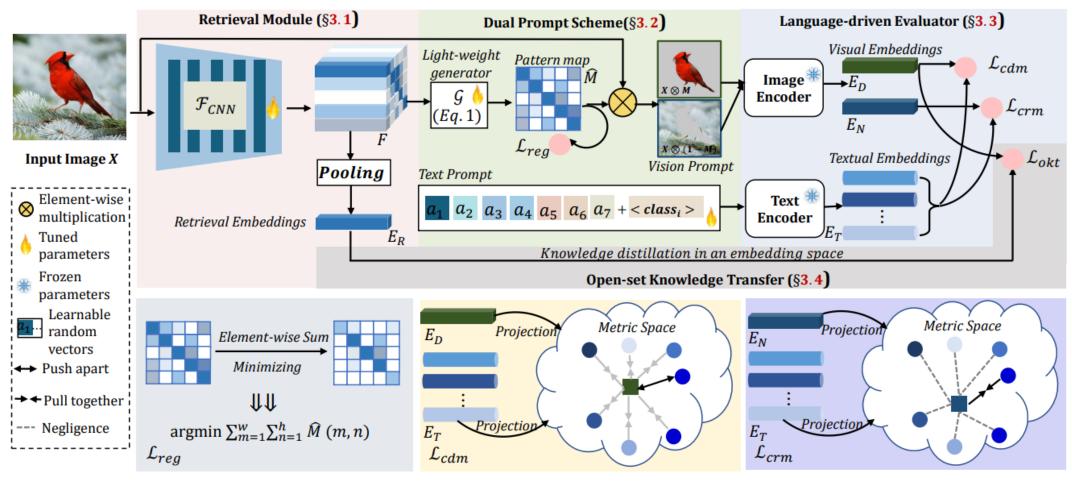
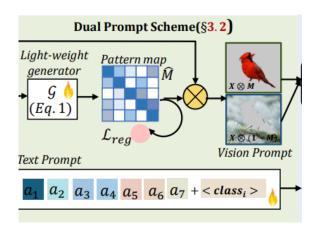


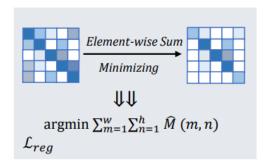
Figure 2. Detailed illustration of **prompting vision-language evaluator**. See §3 for more details.

Experiments

		CUB-200-2011				Stanford Cars 196			FGVC Aircraft				
Method	Arch	1	2	4	8	1	2	4	8	1	2	4	8
SCDA _{TIP17} [52]	R50	57.3	70.2	81.0	88.4	48.3	60.2	71.8	81.8	56.5	67.7	77.6	85.7
CRL _{IJCAI18} [64]	R50	62.5	74.2	82.9	89.7	57.8	69.1	78.6	86.6	61.1	71.6	80.9	88.2
$CEP_{ECCV_{20}}$ [3]	R50	69.2	79.2	86.9	91.6	89.3	93.9	96.6	98.1	-	-	-	-
$HDCL_{IJON_{21}}$ [59]	R50	69.5	79.6	86.8	92.4	84.4	90.1	94.1	96.5	71.1	81.0	88.3	93.3
DGCRL AAAI ₁₉ [65]	R50	67.9	79.1	86.2	91.8	75.9	83.9	89.7	94.0	70.1	79.6	88.0	93.0
DCML _{CVPR₂₁} [62]	R50	68.4	77.9	86.1	91.7	85.2	91.8	96.0	98.0	-	-	-	-
DAS $_{\mathrm{ECCV}_{22}}$ [27]	R50	69.2	79.3	87.1	92.6	87.8	93.2	96.0	97.9	-	-	-	-
$IBC_{ICML_{21}}$ [41]	R50	70.3	80.3	87.6	92.7	88.1	93.3	96.2	98.2	-	-	-	-
$NIA_{CVPR_{22}}$ [40]	R50	70.5	80.6	-	-	89.1	93.4	-	-	-	-	-	-
Proxy CVPR ₂₁ [17]	BN	71.1	80.4	87.4	92.5	88.3	93.1	95.7	97.5	-	-	-	-
$HIST_{CVPR_{22}}$ [25]	R50	71.4	81.1	88.1	-	89.6	93.9	96.4	-	-	-	-	-
ETLR _{CVPR₂₁} [18]	BN	72.1	81.3	87.6	-	89.6	94.0	96.5	-	-	-	-	-
PNCA++ ECCV ₂₀ [46]	R50	72.2	82.0	89.2	93.5	90.1	94.5	97.0	98.4	-	-	-	-
Our PLEor	R50	74.8	84.5	91.3	94.9	94.4	96.9	98.3	98.9	86.3	91.7	95.1	96.7

Dual Prompt Scheme





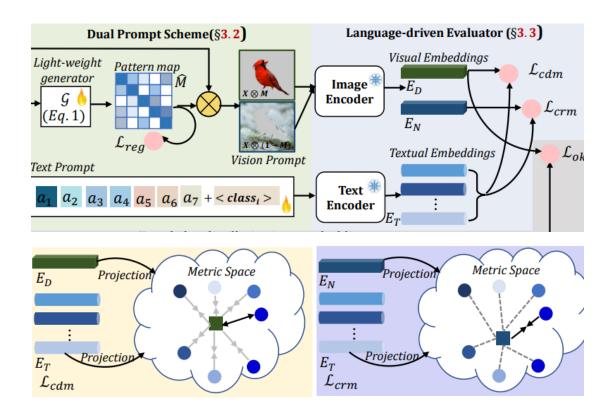
Vision Prompt: To obtain the category-specific discrepancies, the vision prompt aims to project the semantic features into a new space where the location, scale and intensity of these discrepancies are specified.

$$\hat{\mathbf{M}} = \sigma(\mathcal{G}(\mathbf{F})), \quad \mathbf{V_D} = \mathbf{X} \otimes \mathbf{M}, \quad \mathbf{V_N} = \mathbf{X} \otimes (1 - \mathbf{M}),$$

➤ **Text Prompt:** A text prompt is designed to generate appropriate text descriptions automatically via keeping semantically coherent with the category-specific vision prompt.

$$\mathcal{P}_{\mathbf{class}} = (a_1, a_2, \cdots, a_i, \cdots, a_k, \langle class \rangle),$$

Vision-Language Evaluator



Evaluator: the contrastive objective of vision-language evaluator encourages the pre-trained CLIP model to locate the categoryspecific descriptions in vision prompt and generate the categoryspecific semantics into text prompt.

$$\mathcal{L}_{cdm} = -\sum_{i=1}^{N} y_i \cdot log \frac{exp(cos < \mathbf{E_D}, \mathbf{E_T^i} > /\tau)}{\sum_{i=1}^{N} exp(cos < \mathbf{E_D}, \mathbf{E_T^i} > /\tau)},$$

$$\mathcal{L}_{crm} = -\sum_{i=1}^{N} y_{i} \cdot \log(1 - \frac{exp(\cos \langle \mathbf{E_{N}}, \mathbf{E_{T}^{i}} \rangle / \tau)}{\sum_{i=1}^{N} exp(\cos \langle \mathbf{E_{N}}, \mathbf{E_{T}^{i}} \rangle / \tau)}).$$
(7)

Ablation Experiments

Table 1. Comparison of performance and efficiency on CUB-200-2011 using different combinations of constraints. The first row indicates that we use the tranditional classification-based classifier (*i.e.*, ResNet-50) as supervision, to replace the proposed PLEor for comparison. "Time" is the time of extracted retrieval embeddings.

\mathcal{L}_{cdm}	\mathcal{L}_{crm}	\mathcal{L}_{reg}	\mathcal{L}_{okt}	Recall@1	Time
				66.3%	21.1ms
✓				72.1%	42.3ms
\checkmark	\checkmark			74.4%	42.3ms
\checkmark	\checkmark	\checkmark		75.1%	42.3ms
\checkmark	✓	✓	✓	74.8%	21.1ms

Table 2. Evaluation results of retrieval performance on CUB-200-2011 dataset with/without the prompt learning. Hand-craft prompt denotes that we use the handcrafted prompt template ("a photo of a $[\cdot]$.") in text prompt.

Prompt	Recall@1
CLIP + Hand-craft prompt	71.5%
CLIP + Text Prompt	73.3%+1.8
CLIP + Vision&Hand-craft Prompt	$72.4\%_{+0.9}$
CLIP + Vision&Text Prompt	74.8% _{+3.3}

Visualization Experiments

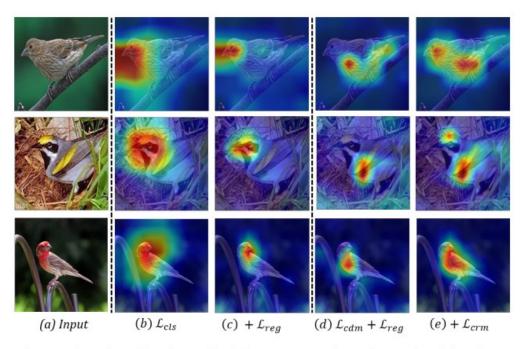


Figure 4. Visualization of vision prompt based on classification-based evaluator (b)(c) and our vision-language evaluator (d)(e), respectively. $+\mathcal{L}$ means that we successively add this constraint, i.e., $+\mathcal{L}_{reg} = \mathcal{L}_{cls} + \mathcal{L}_{reg}$, $+\mathcal{L}_{crm} = \mathcal{L}_{cdm} + \mathcal{L}_{reg} + \mathcal{L}_{crm}$.

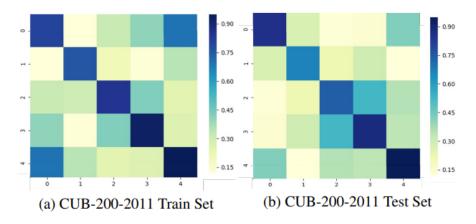


Figure 5. The nearest description for text prompt learned by PLEor, with their similarity shown in grids.

Conclusion

- A prompting vision-language evaluator, i.e., PLEor, is proposed. It can distill the knowledge with open-world visual concepts from CLIP model to alleviate the problems behind open-set scenarios. To our best knowledge, we are the first to regard CLIP model as an evaluator specifically for OSFR task.
- PLEor provides timely insights into the adaptation of pre-trained CLIP model adopting prompt learning, and crucially, demonstrates the effectiveness of a simple modification for inputs of CLIP model in OSFR.
- PLEor achieves new state-of-the-art results compared with classification-based and metric-based evaluators, which is significant gains of 8.0% average retrieval accuracy on three widely-used OSFR datasets.