
FreeNeRF: Improving Few-shot Neural Rendering with
Free Frequency Regularization

Jiawei Yang
UCLA

Paper tag: WED-AM-003

Marco Pavone
Nvidia Research, Stanford University

Yue Wang
Nvidia Research

NeRF struggles at novel view synthesis from sparse views

FreeNeRF improves few-shot neural rendering with a few lines of code

With FreeNeRF

FreeNeRF stabilizes few-shot NeRF’s training by frequency regularization.

Training iterations:

NeRF

FreeNeRF

Position encoded bits
Bits with frequency (low)20

Visible inputs to NeRF

γ(p) = (sin (20πp), cos (20πp), . . . , sin (2L−1πp), cos (2L−1πp))Positional
encoding

Bits with frequency (High)2L−1

γ(p) = (sin (20πp), cos (20πp), . . . , sin (2L−1πp), cos (2L−1πp))

FreeNeRF removes few-shot NeRF’s by occlusion regularization.
FreeNeRF without occlusion regularization

FreeNeRF with occlusion regularization

+ occlusion regularization

FreeNeRF achieves new state-of-the-art performance with minimal overhead.

Our direct baseline FreeNeRFPrevious state-of-the-art Our direct baseline FreeNeRFPrevious state-of-the-art

3-shot DTU obj. PSNR LLFF PSNR Training Time

MipNeRF 9.10 16.11 1x

RegNeRF 18.50 18.84 1.69~1.98x

Ours 19.92 19.63 1.02~1.04x

8-shot Blender PSNR Training Time
MipNeRF 13.93 1x
DietNeRF 22.50 2.8x

Ours 24.26 1.02x

What makes FreeNeRF different?

PixelNeRF1
MVSNeRF2

…
Use costly pre-training & extra CNN models

DieNeRF3
RegNeRF4

…
Use pretrained models for regularization

DSNeRF5
…

Use depth priori

FreeNeRF
• Doesn’t require any pre-training / pre-trained models.

• Doesn’t rely on additional depth information.

• Easy to implement (a few lines of code)

• Fast to run. It only takes about 1.02x training time compared to plain NeRFs.

1. Yu, Alex, et al. "pixelnerf: Neural radiance fields from one or few images." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
2. Chen, Anpei, et al. "Mvsnerf: Fast generalizable radiance field reconstruction from multi-view stereo." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
3. Jain, Ajay, Matthew Tancik, and Pieter Abbeel. "Putting nerf on a diet: Semantically consistent few-shot view synthesis." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
4. Niemeyer, Michael, et al. "Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
5. Deng, Kangle, et al. "Depth-supervised nerf: Fewer views and faster training for free." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

The de-facto standard in NeRF: position encoding.

γ(p) = (sin (20πp), cos (20πp), sin (21πp), cos (21πp), . . . , sin (2L−2πp), cos (2L−2πp), sin (2L−1πp), cos (2L−1πp))
Frequency-

encoded bits
Low-frequency bits High-frequency bits

……………

View
directions

MLP

c

3D
Coordinates

Positional Encoding γ

σ
Rendered Views

Color Head

Density Head
NeRF abstraction • High-frequency mapping enables faster convergence

on high-frequency components6.

• Do we want this property in few-shot NeRF’s learning?

• No!

6. Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional domains." Advances in Neural Information Processing Systems 33 (2020): 7537-7547.

Ob
je

ct
 P

SN
R

8
10
12
14
16
18

Visible ratio

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

9.018.938.799.309.839.138.908.74
10.80

17.62

Pilot Study: Low-frequency-only-inputs work surprisingly well!
Masked bits Masked bits Masked bits Masked bits …

Frequency Regularization

γ(p) = (sin (20πp), cos (20πp), sin (21πp), cos (21πp), . . . , sin (2L−2πp), cos (2L−2πp), sin (2L−1πp), cos (2L−1πp))
Frequency-

encoded bits
Low-frequency bits High-frequency bits

……………

View
directions

MLP

c

3D
Coordinates

Positional Encoding γ

σ
Rendered Views

Color Head

Density Head
NeRF abstraction

Frequency Regularization

γ(p) = (sin (20πp), cos (20πp), sin (21πp), cos (21πp), . . . , sin (2L−2πp), cos (2L−2πp), sin (2L−1πp), cos (2L−1πp))
Frequency-

encoded bits
Low-frequency bits High-frequency bits

……………

View
directions

MLP

c

3D
Coordinates

Positional Encoding γ

σ
Rendered Views

Color Head

Density Head
NeRF + Frequency Regularization

Frequency Mask

Masked Bits

Motivation: Frequency Matters!

10%

Bits with higher frequencyBits with lower frequency

Scheduled frequency mask

Training iterations:

Masked bits

10% 20% 50% 70% 100%

Motivation: Frequency Matters!

Training iterations
Low

High

In
pu

t F
re

qu
en

cy

Visible range

NeRF-based

Low

High

Visible range

In
pu

t F
re

qu
en

cy

FreeNeRF (ours)

Training iterations

10%

Bits with higher frequencyBits with lower frequency

Scheduled frequency mask
Masked bits

Another issue: Floaters

Near

Far

Novel views

Novel views

Training views

Training views

Motivation: Push floaters away

ℒocc =
K

∑
k=1

σk ⋅ mk /K

(1) Push the density of floaters in the near-camera regions () to zeros
(2) Models learn to explain this area in a farther place

mk

Near

Far

✔

Training views Novel views

+ occlusion regularization

FreeNeRF Summary

View
directions

MLP

c

3D
Coordinates

Positional Encoding γ

σ
Rendered Views

Color Head

Density Head
NeRF abstraction

FreeNeRF Summary

View
directions

MLP

c

3D
Coordinates

Positional Encoding γ

σ
Rendered Views

Color Head

Density Head
NeRF + Frequency Regularization

Frequency Mask

Near-camera region

• We use frequency regularization to stabilize NeRF’s training. • We use occlusion regularization to address floater issues.

Easy implementation!

View
directions

MLP

c

3D
Coordinates

Positional Encoding γ

σ
Rendered Views

Color Head

Density Head
NeRF + Frequency Regularization

Frequency Mask

Near-camera region

• We use frequency regularization to stabilize NeRF’s training. • We use occlusion regularization to address floater issues.

freq_mask = ones_like(pos_enc)
freq_mask[:, int(t/T*L)+3:] = 0
NeRF_Inputs = pos_enc * freq_mask

pos_enc[:, int(t/T*L)+3:] = 0

Or simply as

occ_mask = ones_like(queried_density)
occ_mask[:, : occ_reg_range, :] = 1.0
occ_loss = (queried_density * occ_mask).mean()

occ_loss = queried_density[:, : occ_reg_range, :].mean()

Or simply as

FreeNeRF achieves new state-of-the-art performance with minimal overhead

Our direct baseline FreeNeRFPrevious state-of-the-art Our direct baseline FreeNeRFPrevious state-of-the-art

3-shot DTU obj. PSNR LLFF PSNR Training Time

MipNeRF 9.10 16.11 1x

RegNeRF 18.50 18.84 1.69~1.98x

Ours 19.92 19.63 1.02~1.04x

8-shot Blender PSNR Training Time
MipNeRF 13.93 1x
DietNeRF 22.50 2.8x

Ours 24.26 1.02x

Thanks for watching!

FreeNeRF: Improving Few-shot Neural Rendering with
Free Frequency Regularization

• We use frequency regularization to stabilize NeRF’s training.

• We use occlusion regularization to address floater issues.

• Our simply-designed FreeNeRF achieve new state-of-the-art performance on three few-shot benchmarking datasets!

• Please refer to our project page and open-sourced code for more details:

• Projection page: https://jiawei-yang.github.io/FreeNeRF/

• Code Page: https://github.com/Jiawei-Yang/FreeNeRF

Project Page Code Page

https://jiawei-yang.github.io/FreeNeRF/
https://github.com/Jiawei-Yang/FreeNeRF

