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NeRF struggles at novel view synthesis from sparse views



FreeNeRF improves few-shot neural rendering with a few lines of code

With FreeNeRF



FreeNeRF stabilizes few-shot NeRF’s training by frequency regularization. 

Training iterations:

NeRF

FreeNeRF

Position encoded bits
Bits with frequency  (low)20

Visible inputs to NeRF

γ(p) = (sin (20πp), cos (20πp), . . . , sin (2L−1πp), cos (2L−1πp))Positional  
encoding

Bits with frequency  (High)2L−1

γ(p) = (sin (20πp), cos (20πp), . . . , sin (2L−1πp), cos (2L−1πp))



FreeNeRF removes few-shot NeRF’s by occlusion regularization.
FreeNeRF without occlusion regularization 

FreeNeRF with occlusion regularization 

+ occlusion regularization



FreeNeRF achieves new state-of-the-art performance with minimal overhead.

Our direct baseline FreeNeRFPrevious state-of-the-art Our direct baseline FreeNeRFPrevious state-of-the-art

3-shot DTU obj.  PSNR LLFF PSNR Training Time

MipNeRF 9.10 16.11 1x 

RegNeRF 18.50 18.84 1.69~1.98x

Ours 19.92 19.63 1.02~1.04x

8-shot Blender PSNR Training  Time
MipNeRF 13.93 1x 
DietNeRF 22.50 2.8x

Ours 24.26 1.02x



What makes FreeNeRF different?

PixelNeRF1 
MVSNeRF2 

…
Use costly pre-training & extra CNN models

DieNeRF3 
RegNeRF4 

…
Use pretrained models for regularization

DSNeRF5 
…

Use depth priori

FreeNeRF
• Doesn’t require any pre-training / pre-trained models. 

• Doesn’t rely on additional depth information. 

• Easy to implement (a few lines of code) 

• Fast to run. It only takes about 1.02x training time compared to plain NeRFs.

1. Yu, Alex, et al. "pixelnerf: Neural radiance fields from one or few images." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. 
2. Chen, Anpei, et al. "Mvsnerf: Fast generalizable radiance field reconstruction from multi-view stereo." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021. 
3. Jain, Ajay, Matthew Tancik, and Pieter Abbeel. "Putting nerf on a diet: Semantically consistent few-shot view synthesis." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021. 
4. Niemeyer, Michael, et al. "Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022. 
5. Deng, Kangle, et al. "Depth-supervised nerf: Fewer views and faster training for free." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022. 



The de-facto standard in NeRF: position encoding.

γ(p) = (sin (20πp), cos (20πp), sin (21πp), cos (21πp), . . . , sin (2L−2πp), cos (2L−2πp), sin (2L−1πp), cos (2L−1πp))
Frequency-

encoded bits
Low-frequency bits High-frequency bits

……………
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NeRF abstraction •  High-frequency mapping enables faster convergence 

on high-frequency components6. 

• Do we want this property in few-shot NeRF’s learning? 

•  No!

6. Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional domains." Advances in Neural Information Processing Systems 33 (2020): 7537-7547.
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Pilot Study: Low-frequency-only-inputs work surprisingly well!
Masked bits Masked bits Masked bits Masked bits …



Frequency Regularization

γ(p) = (sin (20πp), cos (20πp), sin (21πp), cos (21πp), . . . , sin (2L−2πp), cos (2L−2πp), sin (2L−1πp), cos (2L−1πp))
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Frequency Regularization

γ(p) = (sin (20πp), cos (20πp), sin (21πp), cos (21πp), . . . , sin (2L−2πp), cos (2L−2πp), sin (2L−1πp), cos (2L−1πp))
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Motivation: Frequency Matters!

10%

Bits with higher frequencyBits with lower frequency

Scheduled frequency mask

Training iterations:

Masked bits
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Another issue: Floaters

Near
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Novel views

Novel views

Training views

Training views



Motivation: Push floaters away

ℒocc =
K

∑
k=1

σk ⋅ mk /K

(1) Push the density of floaters in the near-camera regions ( ) to zeros 
(2) Models learn to explain this area in a farther place

mk

Near

Far

✔

Training views Novel views

+ occlusion regularization



FreeNeRF Summary
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FreeNeRF Summary
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Near-camera region

• We use frequency regularization to stabilize NeRF’s training. • We use occlusion regularization to address floater issues.



Easy implementation!
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Frequency Mask

Near-camera region

• We use frequency regularization to stabilize NeRF’s training. • We use occlusion regularization to address floater issues.

freq_mask = ones_like(pos_enc) 
freq_mask[:, int(t/T*L)+3:]  = 0 
NeRF_Inputs = pos_enc * freq_mask

pos_enc[:, int(t/T*L)+3:] = 0

Or simply as

occ_mask = ones_like(queried_density) 
occ_mask[:, : occ_reg_range, :]  = 1.0 
occ_loss = (queried_density * occ_mask).mean()

occ_loss = queried_density[:, : occ_reg_range, :].mean()

Or simply as



FreeNeRF achieves new state-of-the-art performance with minimal overhead

Our direct baseline FreeNeRFPrevious state-of-the-art Our direct baseline FreeNeRFPrevious state-of-the-art

3-shot DTU obj.  PSNR LLFF PSNR Training Time

MipNeRF 9.10 16.11 1x 

RegNeRF 18.50 18.84 1.69~1.98x

Ours 19.92 19.63 1.02~1.04x

8-shot Blender PSNR Training  Time
MipNeRF 13.93 1x 
DietNeRF 22.50 2.8x

Ours 24.26 1.02x



Thanks for watching!

FreeNeRF: Improving Few-shot Neural Rendering with 
Free Frequency Regularization

• We use frequency regularization to stabilize NeRF’s training. 

• We use occlusion regularization to address floater issues. 

• Our simply-designed FreeNeRF achieve new state-of-the-art performance on three few-shot benchmarking datasets! 

• Please refer to our project page and open-sourced code for more details: 

• Projection page: https://jiawei-yang.github.io/FreeNeRF/ 

• Code Page: https://github.com/Jiawei-Yang/FreeNeRF

Project Page Code Page

https://jiawei-yang.github.io/FreeNeRF/
https://github.com/Jiawei-Yang/FreeNeRF

