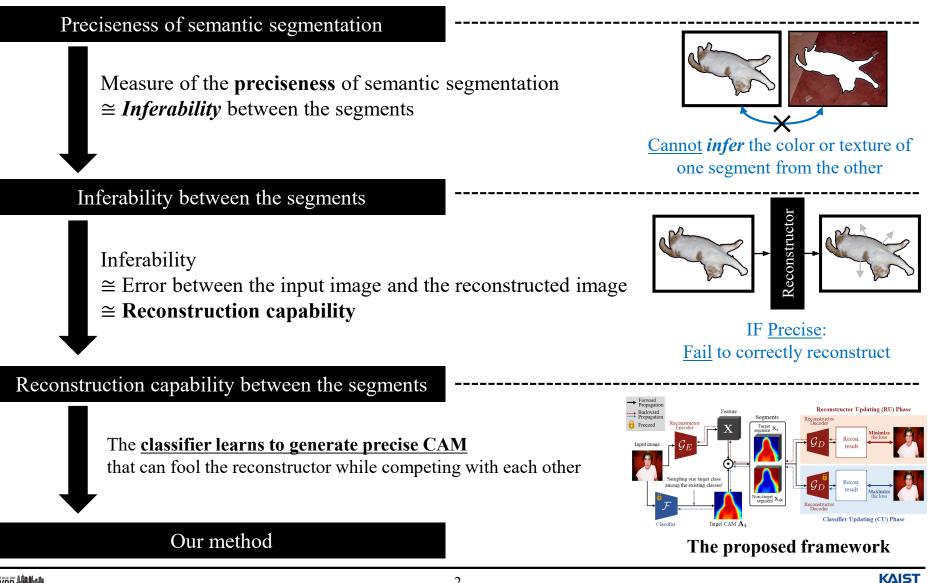
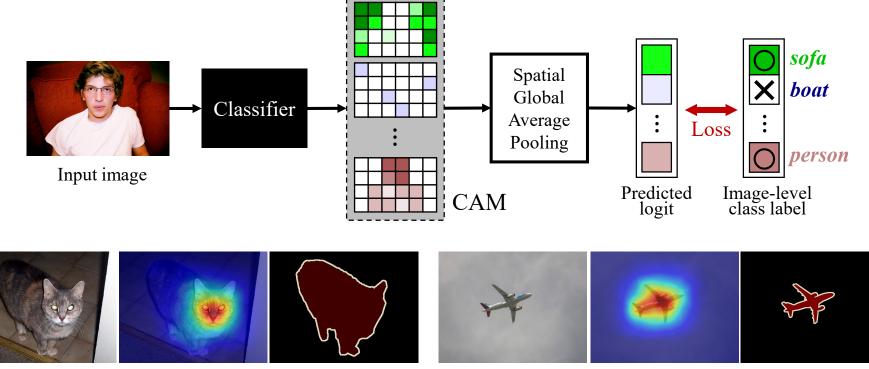
WED-AM-295



Weakly Supervised Semantic Segmentation via Adversarial Learning of Classifier and Reconstructor

Hyeokjun Kweon*, Sung–Hoon Yoon*, and Kuk-Jin Yoon {0327june, yoon307, kjyoon}@kaist.ac.kr


Summary of the Paper

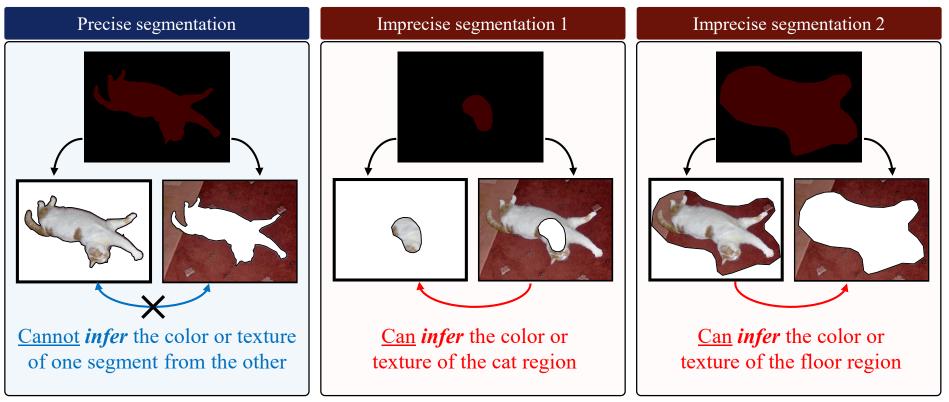
Aims to obtain **pseudo-GT** using **weak (classification)** labels only, and trains segmentation model with it

Introduction: Class Activation Map (CAM) and Issues

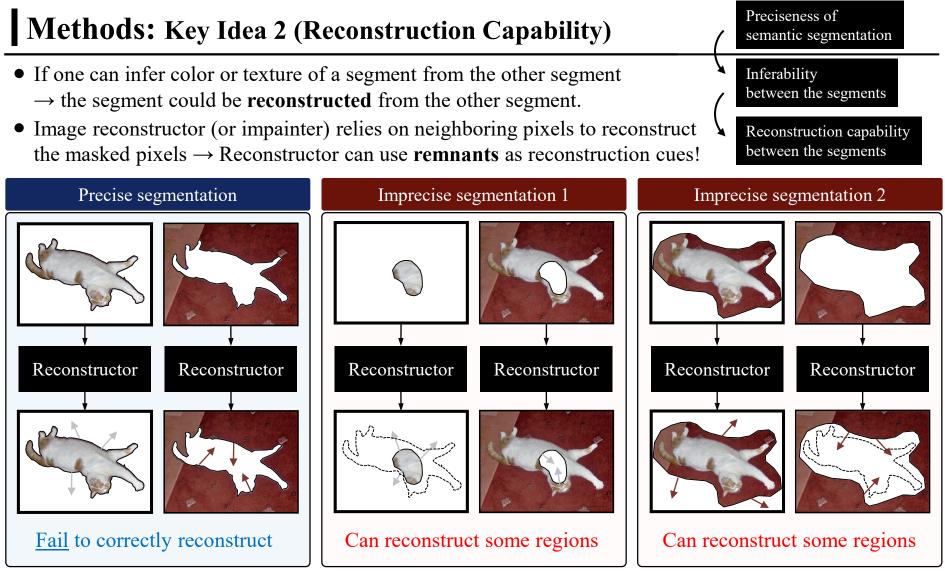
- WSSS methods have used a CAM [1] of classifier to obtain pseudo-GT from image-level class labels
- A classifier tends to focus on the **shared visual patterns** of each class as training proceeds → The resulting CAM highlights the **discriminative regions** of the corresponding class

(1) Incomplete activation

(2) Imprecise boundary

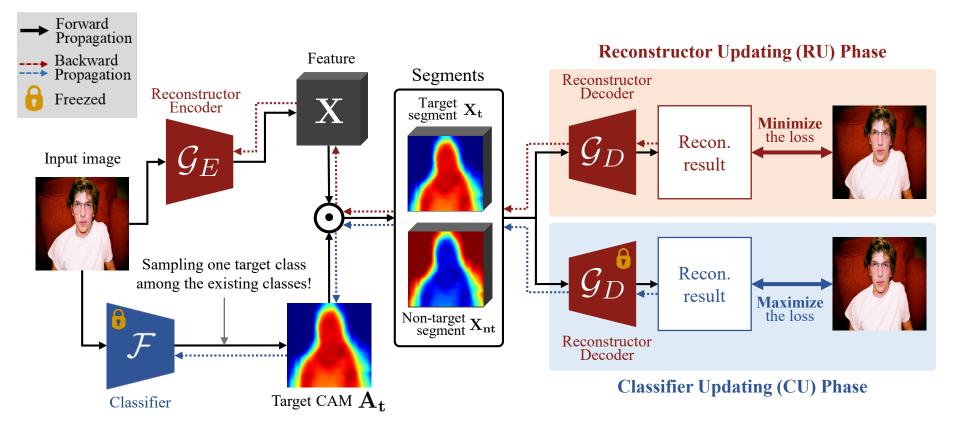

- CAM = a reasonable localizer extracting **spatial information from semantic supervision**
- However, from the perspective of semantic segmentation, CAM still has several issues

Methods: Key Idea 1 (Semantic Segmentation and Inferability)


• How can we measure the preciseness of semantic segmentation without using GT map?

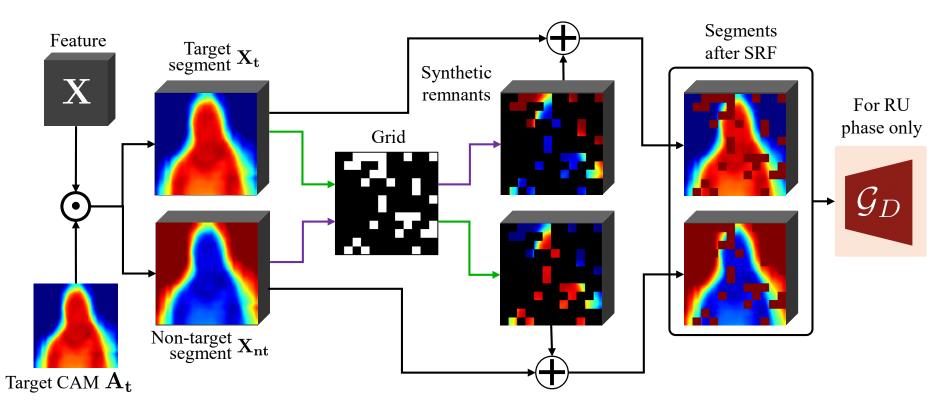
<u>Precise</u> Segmentation \rightarrow <u>Low</u> Inferability between the segments <u>Imprecise</u> Segmentation \rightarrow <u>High</u> Inferability between the segments

- *Inferability* between the segments = Measure of the **preciseness** of semantic segmentation
- Train CAM to segment the image into the segments that have low *inferability* between them
- But how can we **quantify** the inferability?



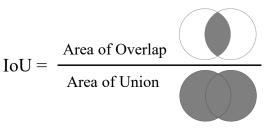
- **Reconstruction capability** = Error between the input image and the reconstructed image = Inferability
- Train CAM to segment the image into the segments that make reconstructor fail to impaint each other
- But how can we obtain such reconstructor?

Methods: Adversarial Learning of Classifier and Reconstructor


- Similar to the GANs, a classifier and a reconstructor are jointly trained in an alternative manner
- The target CAM of the classifier decomposes a feature into two segments: target and non-target
- Goal of reconstructor: reconstructing the input image from the segments, by fully exploiting the remnants
- Goal of **classifier:** <u>making the reconstructor fails</u>, by providing good CAM that achieves precise segmentation.
- The classifier learns to generate precise CAM that can fool the reconstructor while competing with each other

Methods: Stochastic Random Feeding (SRF)

- The proposed adversarial learning has a risk of falling into an undesirable local optimum
- The classifier succeeds to provide precise CAM \rightarrow The segments are perfectly segmented
- The reconstructor tends to *generate* the original image (rather than learning how to exploit the remnants)
- We devise SRF technique to assure the <u>existence of remnants</u> by feeding synthetic remnants
- SRF technique is applied to the RU phase only, not for the CU phase



ΚΔΙΣΤ

Experimental Results: Settings and Qualitative Analysis

- Dataset: PASCAL VOC 2012 [13] and MS COCO 2014 [14]
- Metric: mean Intersection over Union (mIoU)
- Backbones: ResNet38d for both classifier and reconstructor
- Protocols:
 - (1) Train the framework using *train* set.
 - (2) Obtain <u>CAM</u> of the images of *train* set.
 - (3) Postprocess the CAM into pseudo-labels using CRF, random walking, etc.
- (4) Train semantic segmentation network on train set using the acquired pseudo-labels.
- (5) Evaluate the network on *val* and *test* set. (We use the GT segmentation map here only.)

Experimental Results: Quantitative Analysis

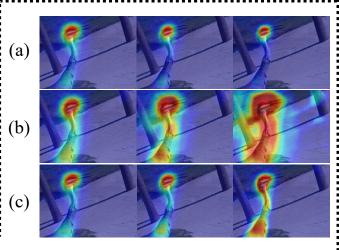
• Ablation studies about learning strategy and the loss terms

(1) Adversarial strategy

Both networks are jointly trained in an alternative manner

(2) Pre-trained strategy

First, solely train the classifier without using reconstructor



Second, train the reconstructor while freezing the classifier

Finally, train the classifier while freezing the reconstructor

Learning strategy for reconstructor	SRF	mIoU (%)
Baseline	48.4	
Pre-trained		52.9
Pre-trained	\checkmark	54.6
Adversarial		55.8
Adversarial	\checkmark	60.3

	Lo	ss functi	ion	Metrics			
	\mathcal{L}_{cls}^{CU}	\mathcal{L}_t^{CU}	\mathcal{L}_{nt}^{CU}	Precision	Recall	mIoU (%)	
	\checkmark			0.61	0.72	48.4	
(a)	\checkmark	\checkmark		0.73 (+0.12)	0.68 (-0.04)	53.4 (+5.0)	
(b)	\checkmark		\checkmark	0.58 (-0.03)	0.77 (+0.05)	51.5 (+3.1)	
(c)	\checkmark	\checkmark	\checkmark	0.75 (+0.14)	0.76 (+0.04)	60.3 (+13.6)	

• Comparisons with SoTAs (at CAM)

Methods	Backbone	seed	w/ CRF	Mask
CONTA [48] NeurIPS20	WRN38	56.2	65.4	66.1
EDAM [39] _{CVPR21}	WRN38	52.8	58.2	68.1
AdvCAM [21] CVPR21	RN50	55.6	62.1	68.0
ECS [35] _{ICCV21}	WRN38	56.6	58.6	-
OC-CSE [19] _{ICCV21}	WRN38	56.0	62.8	66.9
CDA [33] <i>ICCV</i> 21	WRN38	58.4	-	66.4
PMM [28] _{ICCV21}	WRN38	58.2	61.5	61.0
RIB [20] _{NeurIPS}	RN50	56.5	62.9	70.6
AMR [32] _{AAAI22}	RN50	56.8	-	69.7
ReCAM [8] _{CVPR22}	RN50	54.8	-	70.5
SIPE $[7]_{CVPR22}$	RN50	58.6	<u>64.7</u>	-
CLIMS [41] _{CVPR22}	WRN38	56.6	-	70.5
W-OoD [22] _{CVPR22}	RN50	53.3	58.4	
PPC [10] _{CVPR22}	WRN38	61.5	64.0	70.1
AEFT [46] ECCV22	WRN38	56.0	63.5	<u>71.0</u>
Ours (ACR)	WRN38	<u>60.3</u>	65.9	72.3
MCT [44] _{CVPR22}	ViT	61.7	-	69.1
Ours (ACR + ViT [9])	ViT	65.5	-	70.9

• Comparisons with SoTAs (at SS)

MethodsBackboneVOC valVOC testCOCO vAffinityNet $[2]_{CVPR19}$ WRN3861.763.7-IRNet $[1]_{CVPR19}$ RN5063.564.841.4SEAM $[37]_{CVPR20}$ WRN3864.565.731.9OC-CSE $[19]_{ICCV21}$ WRN3868.468.236.4CPN $[49]_{ICCV21}$ WRN3867.868.5-RIB $[20]_{NeurIPS21}$ RN10168.368.643.8PMM $[28]_{ICCV21}$ WRN3868.569.036.7ReCAM $[8]_{CVPR22}$ RN10168.568.442.9SIPE $[7]_{CVPR22}$ RN5069.368.7-SIPE $[7]_{CVPR22}$ WRN3843.6CLIMS $[41]_{CVPR22}$ RN5069.368.7-Spatial-BCE $[38]_{ECCV22}$ RN10170.071.3-Spatial-BCE $[38]_{ECCV22}$ WRN3870.971.744.8Ours (ACR)WRN3871.971.642.0Ours (ACR + Vit $[91)$ WR3872.472.4-	1			`	/
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Methods	Backbone	VOC val	VOC test	COCO val
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	AffinityNet [2] _{CVPR18}	WRN38	61.7	63.7	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IRNet $[1]_{CVPR19}$	RN50	63.5	64.8	41.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SEAM [37] _{CVPR20}	WRN38	64.5	65.7	31.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OC-CSE [19] _{ICCV21}	WRN38	68.4	68.2	36.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CPN [49] _{ICCV21}	WRN38	67.8	68.5	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RIB [20] _{NeurIPS21}	RN101	68.3	68.6	43.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PMM [28] _{ICCV21}	WRN38	68.5	69.0	36.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ReCAM [8] _{CVPR22}	RN101	68.5	68.4	42.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SIPE $[7]_{CVPR22}$	RN101	68.8	69.7	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SIPE $[7]_{CVPR22}$	WRN38	-	-	43.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CLIMS [41] _{CVPR22}	RN5 0	69.3	68.7	
		WRN38	70.7	70.1	
AEFT [46] _{ECCV22} WRN38 70.9 71.7 44.8 Ours (ACR) WRN38 71.9 71.9 45.3 MCT [44] _{CVPR22} WRN38 71.9 71.6 42.0	Spatial-BCE [38] _{ECCV22}	RN101	70.0	71.3	-
AEFT [46] _{ECCV22} WRN38 70.9 71.7 44.8 Ours (ACR) WRN38 71.9 71.9 45.3 MCT [44] _{CVPR22} WRN38 71.9 71.6 42.0	Spatial-BCE [38] _{ECCV22}	VGG16	-	-	35.2
MCT [44] _{CVPR22} WRN38 71.9 71.6 42.0	AEFT [46] _{ECCV22}	WRN38	70.9	71.7	44.8
		WRN38	71.9	71.9	45.3
	MCT [44] _{CVPR22}	WRN38	71.9	71.6	42.0
	Ours (ACR + ViT [9])	WRN38	72.4	72.4	-

CVPR

