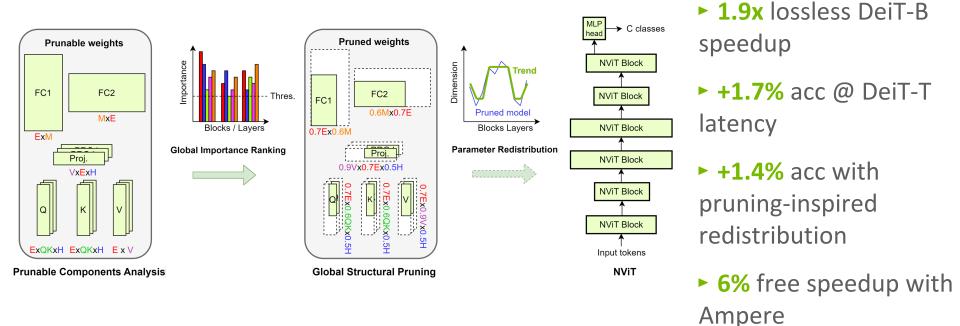
Global Vision Transformer Pruning with Hessian-Aware Saliency

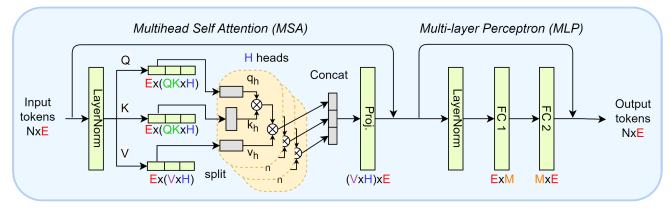
Huanrui Yang, Hongxu Yin, Maying Shen, Pavlo Molchanov, Hai Li, and Jan Kautz

NVIDIA, UC Berkeley, Duke University

Overall workflow



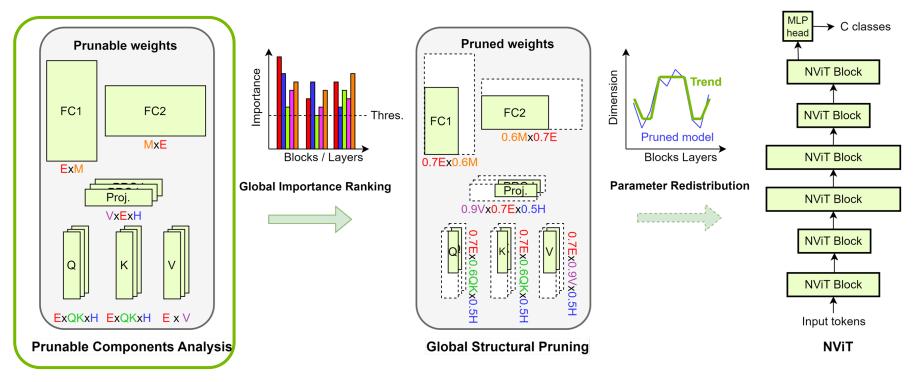
Challenges in finding efficient ViT



- Distinct architectural components with different dimensions and value ranges
- Multiple independent dimensions induce huge search space
 - Manually designed layer-wise sparsity not optimal

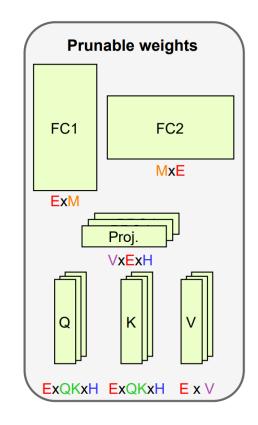
Global structural pruning required

Identifying prunable components



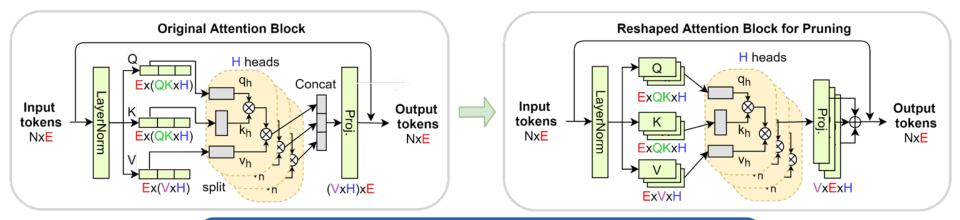
Prunable components summary

- Shared across all blocks
 - EMB: Embedding
- Indepent in each block
 - **H:** Number of heads
 - QK: Output dimension of Q and K projection
 - V: Output dimension of V projection
 - MLP: Hidden dimension of MLP per block



Identifying prunable components

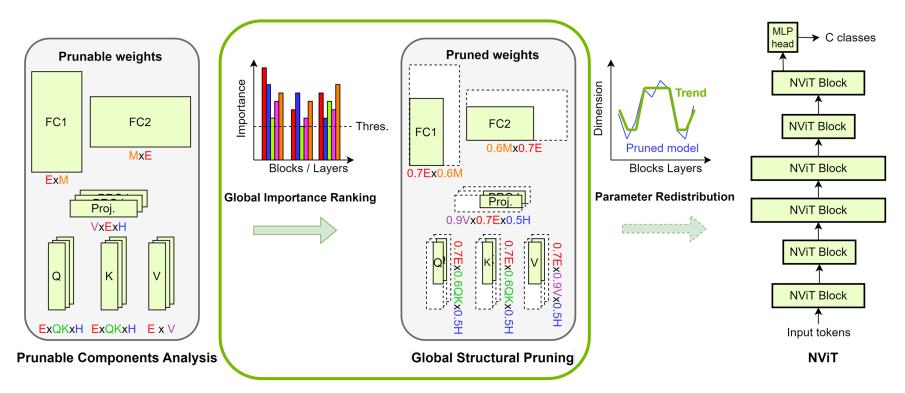
- Insight: Explicit head alignment
 - Imbalanced QK/V dimension in each head hurts parallelization
 - Control #head and align QK/V in each head with reshaped attention



Observation: Better utilization of latency budget

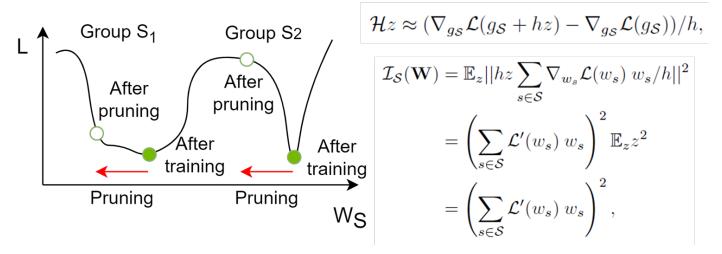
• Head alignment +0.4% accuracy than w/o alignment

Global Structural Pruning



Hessian-aware importance criteria

• Removing components with lower curvature reduces pruning loss



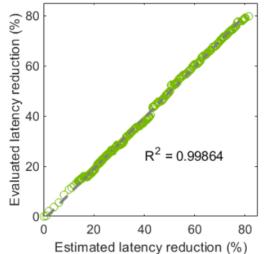
Magnitude-based criteria drops additional 40% accuracy than Hessian-aware in Base->Small compression

Latency-aware regularization

• Adjust importance score with latency reduction

$$\mathcal{I}_{\mathcal{S}}^{L}(\mathbf{W}) = \mathcal{I}_{\mathcal{S}}(\mathbf{W}) - \eta \Big(\text{Lat}(\mathbf{W}) - \text{Lat}(\mathbf{W} \setminus \mathcal{S}) \Big)$$

- Efficient model latency estimation via latency lookup table
 - Linear interpolate between 9,000 profiled latency



9

Pruning analysis on ImageNet-1K

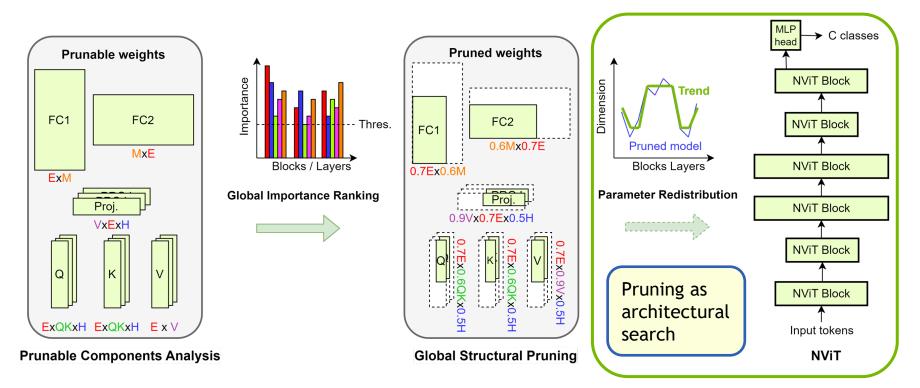
- Lossless compression
 - **1.86x speedup over DEIT-B**
- 2x speedup
 - 2x speedup with -0.4% acc
 - 1.4x faster than SWIN-S
- Base -> Small
 - +1% acc over DEIT-S
- Base -> Tiny
 - +1.7% acc over DEIT-T

Largely outperforms SOTA ViT compression methods

	Size (Compression)		Speedup (\times)		
Model	#Para (×)	$\#$ FLOPs (\times)	V100	RTX 3080	Top-1 Acc.
DEIT-B	86M (1.00)	17.6G (1.00)	1.00	1.00	83.36
SWIN-B	88M (0.99)	15.4G (1.14)	0.95	-	83.30
NViT-B	34M (2.57)	6.8G (2.57)	1.86	1.75	83.29
+ ASP	17M (5.14)	6.8G (2.57)	1.86	1.85	83.29
SWIN-S	50M (1.74)	8.7G (2.02)	1.49	-	83.00
NViT-H	30M (2.84)	6.2G (2.85)	2.01	1.89	82.95
+ ASP	15M (5.68)	6.2G (2.85)	2.01	1.99	82.95
DEIT-S	22M (3.94)	4.6G (3.82)	2.44	2.27	81.20
SWIN-T	29M (2.99)	4.5G (3.91)	2.58	-	81.30
NViT-S	21M (4.18)	4.2G (4.24)	2.52	2.35	82.19
+ ASP	10.5M (8.36)	4.2G (4.24)	2.52	2.47	82.19
DEIT-T	5.6M (15.28)	1.2G (14.01)	5.18	4.66	74.50
NViT-T	6.9M (12.47)	1.3G (13.55)	4.97	4.55	76.21
+ ASP	3.5M (24.94)	1.3G (13.55)	4.97	4.66	76.21

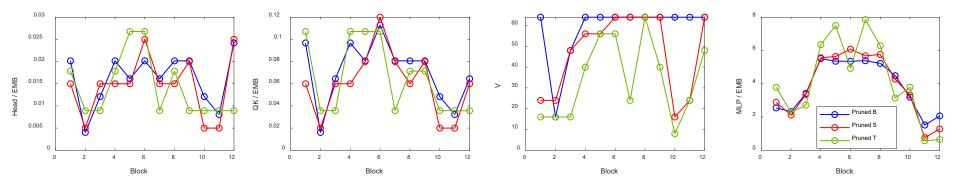
10

Exploring parameter redistribution



Trends observed in ViT pruning

• Remained dimensions under different pruning configurations

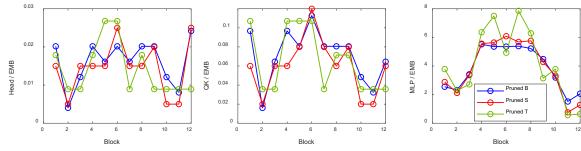


Linear scaling with EMB

- H, QK and MLP scales linearly with EMB
- V stays largely the same

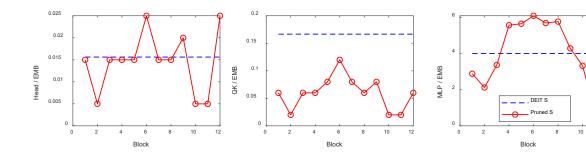
Trends observed in ViT pruning

• Block-wise parameter redistribution



Less-more-less trend
First and last block more important

• In-block parameter redistribution



- Less QK/V
- More MLP

12

Design novel architecture

Pruned models

(inspires)

Embedding-based distribution rule

(yields)

Consistent improvements over hand-designed

Blocks	Н	QK	V	MLP
DeiT	EMB/64	64	64	EMB×4
ReViT	$\epsilon \times \text{EMB}/100$	$\epsilon \times \text{EMB/20}$	64	$\epsilon \times \text{EMB} \times 3$

Model	EMB	#Para (×)	#FLOPs (×)	Speedup	Accuracy
DeiT-S	384	22M (3.94)	4.6G (3.82)	$2.29 \times$	81.01%*
ReViT-S	384	23M (3.82)	4.7G (3.75)	$2.31 \times$	81.22%
		5.6M (15.28)			72.84%*
ReViT-T	176	5.9M (14.64)	1.3G (13.69)	$4.75 \times$	74.20%

- Less-more-less trend effective for efficient ViT design
- Trade QK with MLP for higher accuracy under latency budget
- Global pruning facilitates efficient architecture discovery

Global Vision Transformer Pruning with Hessian-Aware Saliency

Paper

Thanks! Q & A

Code

