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Overall workflow
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1.9x lossless DeiT-B 
speedup

+1.7% acc @ DeiT-T 
latency

+1.4% acc with 
pruning-inspired 
redistribution 

6% free speedup with 
Ampere



Challenges in finding efficient ViT

● Distinct architectural components with different dimensions and 
value ranges

● Multiple independent dimensions induce huge search space
○ Manually designed layer-wise sparsity not optimal
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Global structural pruning required



Identifying prunable components

4



Prunable components summary

○ Shared across all blocks
○ EMB: Embedding 

○ Indepent in each block
○ H: Number of heads
○ QK: Output dimension of Q and K projection
○ V: Output dimension of V projection 
○ MLP: Hidden dimension of MLP per block



Identifying prunable components

● Insight: Explicit head alignment
○ Imbalanced QK/V dimension in each head hurts parallelization 
○ Control #head and align QK/V in each head with reshaped attention 

Observation: Better utilization of latency budget
• Head alignment +0.4% accuracy than w/o alignment



Global Structural Pruning
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Hessian-aware importance criteria

● Removing components with lower curvature reduces pruning loss

Magnitude-based criteria drops additional 40% accuracy 
than Hessian-aware in Base->Small compression
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Latency-aware regularization

● Adjust importance score with latency reduction

● Efficient model latency estimation via latency lookup table
○ Linear interpolate between 9,000 profiled latency
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Pruning analysis on ImageNet-1K

● Lossless compression
○ 1.86x speedup over DEIT-B

● 2x speedup
○ 2x speedup with -0.4% acc
○ 1.4x faster than SWIN-S

● Base -> Small
○ +1% acc over DEIT-S

● Base -> Tiny
○ +1.7% acc over DEIT-T

Largely outperforms SOTA 
ViT compression methods
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Exploring parameter redistribution
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Pruning as 
architectural 
search



Trends observed in ViT pruning 

● Remained dimensions under different pruning configurations
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Linear scaling with EMB
• H, QK and MLP scales linearly with EMB
• V stays largely the same
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Trends observed in ViT pruning 

● Block-wise parameter redistribution

● In-block parameter redistribution

• Less-more-less trend
• First and last block 

more important
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• Less QK/V
• More MLP

13



Design novel architecture
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• Less-more-less trend effective for efficient ViT design
• Trade QK with MLP for higher accuracy under latency budget
• Global pruning facilitates efficient architecture discovery



Global Vision Transformer Pruning with 
Hessian-Aware Saliency

Thanks!
Q & A
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