Curricular Object Manipulation in LiDAR-Based Object Detection

Prerequisites

• GT-Aug: Ground Truth Augmentation (Copy Paste)

• Curriculum Learning : Learning in an easy to hard manner

Observations

• The learning difficulties of objects vary greatly : 10% objects contain <= 5 points

• Simply sampling hard objects at early stage has no benefit

Questions

- How to adjust the sampling strategies according to different training stages ?
- How to properly handle augmented objects as well as **original objects** ?

Method

 Curriculum learning: we embed the easy-to-hard training strategy into both loss design and augmentation process

Our framework

Functions

• COMLoss

$$w = 1 + h_t \cdot (1 - e^{\beta \cdot \tilde{s}}) / (1 + e^{\beta \cdot \tilde{s}}),$$

where $h_t = H \cdot (t_r - t) / T.$

$$\mathcal{L} = \frac{1}{N} \left(\mathcal{L}_n + \sum_{p=1}^P w_p \cdot (\mathcal{L}_c^p + \mathcal{L}_r^p) + \sum_{q=1}^Q w_q \cdot (\mathcal{L}_c^q + \mathcal{L}_r^q) \right)$$

• COMAug

$$p_g = \exp\{-(\tilde{s}_g - \mu^t)^2 / (2\sigma^2)\} \quad \mu_t = s_g, \text{ where } g = \min(\lfloor (\lambda \cdot t/T) \cdot G \rfloor, G),$$

$$p^g = (p_g \cdot n_g) / (\sum_{i=1}^G p_i \cdot n_i).$$

Clustering objects by well-designed heuristics

1.Distance 2.Object Size 3.Relative Angle 4.Occupancy Ratio

Size

Visualization of pedestrian groups

Quantitative results on Waymo

Dataatar	Mathad	Vehicle	
Detector	Method	3D AP _{L1} (%)	$3D AP_{L2} (\%)$
SECOND [51]	+ None	71.72	63.26
	+ GT-Aug	72.40 (+0.68)	63.95 (+0.69)
	+ COMLoss	72.82 (+1.10)	64.35 (+1.09)
	+ COMAug	73.07 (+1.35)	64.57 (+1.31)
	+ COM	73.32 (+1.60)	65.34 (+2.08)
PointPillars [21]	+ None	69.28	61.04
	+ GT-Aug	70.00 (+0.72)	61.70 (+0.66)
	+ COMLoss	70.78 (+1.50)	62.43 (+1.39)
	+ COMAug	71.01 (+1.73)	62.88 (+1.84)
	+ COM	71.38 (+2.10)	62.96 (+1.92)
CenterPoint [56]	+ None	70.97	62.54
	+ GT-Aug	71.05 (+0.08)	62.66 (+0.12)
	+ COMLoss	71.57 (+0.60)	63.13 (+0.59)
	+ COMAug	72.03 (+1.06)	63.61 (+1.07)
	+ COM	72.15 (+1.18)	64.29 (+1.75)

Table 2. Performances on class vehicle. In green are the gaps of at least +1.0 point.

Detector	Method	Pedestrian	
Dettettor	Withiliti	$3D AP_{L1} (\%)$	$3D AP_{L2} (\%)$
SECOND [51]	+ None	62.37	54.05
	+ GT-Aug	65.40 (+3.03)	57.07 (+3.02)
	+ COMLoss	66.23 (+3.86)	57.77 (+3.72)
	+ COMAug	66.46 (+4.09)	57.97 (+3.92)
	+ <i>COM</i>	66.66 (+4.29)	58.14 (+4.09)
	+ None	64.36	55.98
PointPillars [21]	+ GT-Aug	65.54 (+1.18)	57.20 (+1.22)
	+ COMLoss	66.19 (+1.83)	57.80 (+1.82)
	+ COMAug	66.75 (+2.39)	58.40 (+2.42)
	+ <i>COM</i>	66.81 (+2.45)	58.52 (+2.54)
CenterPoint [56]	+ None	72.79	65.02
	+ GT-Aug	73.62 (+0.83)	65.84 (+0.82)
	+ COMLoss	74.16 (+1.37)	66.36 (+1.34)
	+ COMAug	75.34 (+2.55)	67.66 (+2.64)
	+ <i>COM</i>	75.43 (+2.64)	67.76 (+2.74)

Table 1. Performances on class pedestrian. In green are the gaps of at least +2.0 point.

Ablation study for COMAug

- Different clustering strategies
- Visualization of our sampling probability

	Occup.	Dist.	Angle	Size	$3D AP_{L1} (\%)$	$3D AP_{L2} (\%)$
A0					71.05	62.66
A1	\checkmark				71.36 (+0.31)	62.93 (+0.33)
A2		\checkmark			71.51 (+0.46)	63.11 (+0.45)
A3			\checkmark		71.33 (+0.28)	62.92 (+0.32)
A4				\checkmark	71.38 (+0.33)	62.98 (+0.38)
A5	\checkmark	\checkmark			71.68 (+0.63)	63.24 (+0.31)
A6	\checkmark	\checkmark	\checkmark		71.86 (+0.81)	63.41 (+0.75)
A7	\checkmark	\checkmark		\checkmark	71.89 (+0.84)	63.44 (+0.78)
A8	\checkmark	\checkmark	\checkmark	\checkmark	72.03 (+0.98)	63.61 (+0.95)

Table 3. Performances with different clustering factors. Occup. and Dist. stand for occupancy ratio and distance, respectively.

Figure 8. Visualization of sampling probability.

Ablation study for COMLoss

• Whether the anti-curriculum learning is effective ?

• When to start emphasizing difficult samples ?

TO DO

- Consider the regression difficulty
- Design more appropriate grouping strategies
- Extend to other LiDAR-related tasks, such as LiDAR segmentation and multimodality 3D object detection

Thank You !