

上海人工智能实验室 Shanghai Artificial Intelligence Laboratory

Fully Self-Supervised Depth Estimation from Defocus Clue CVPR 2023

Haozhe Si*, Bin Zhao*, Dong Wang⁺, Yunpeng Gao, Mulin Chen, Zhigang Wang, Xuelong Li⁺

Introduction: Depth-from-Defocus (DFD)

- DFD estimates the depth base on the degree of blur or defocus in the image.
 - Objects at different distances from the camera will be blurred or defocused to different extents.
- Problems of existing DFD works:
 - <u>Supervised DFD</u> works require accurate depth ground-truth;
 - <u>Self-supervised DFD</u> methods rely on all-in-focus (AIF) during training. However, capturing AIF images can be challenging in real-world scenarios.

- A more realistic setting:

 - The availability of depth and AIF images ground-truth is deprived. Only focal stacks are provided in model training.
 - Fully Self-supervised DFD!
- Challenge:
 - No longer have the direct/indirect optimization goal for the model.

• Benefits:

- More practical data collection process in real-world scenario; • More flexible and adaptable training, better generalization taking advantage from SSL.

Proposed Framework

- **Input:** Sparse focal stack.
- predicted depth and AIF images.
- **DAIF-Net:** Predicts depth and AIF images from input. Optical Model for Defocus Blur: Render defocus image from
- Self-supervision: Reconstruct the input focal stack.

Optical Model for Defocus Blur

• Defocus Map Generation:

- Use defocus map to quantitatively measure the defocus blur in an image.
- The circle of confusion (CoC) measures the diameter of such a blurry circle.
- The relationship between CoC and depth is well established by the thin-lens model.
- We further measure the radius of the CoC in pixels:

$$\sigma = \frac{CoC}{2 \cdot p} = \frac{1}{2p} \frac{|d_o - F|}{d_o} \frac{1}{N}$$

• We can generate defocus map from the predicted depth map with above equation.

 $\frac{f^2}{(F-f)}$ om the predicted

Optical Model for Defocus Blur

Defocus Image Rendering:

- Using Point Spread Function (PSF)

$$\mathcal{F}_{x,y}(u,v) = \frac{1}{2\pi}$$

• The defocus image is produced by convolving AIF images with PSF: $J := I \otimes \mathcal{F}$

• Why Optical Model?

- <u>Physically explainable process</u>: Encourages the predicted depth and AIF images to have their corresponding physical properties.
- Optimization issue: Using an optical model requires no training.
- <u>Robust and provable performance</u>

• In practice, we use a simplified disc-shaped PSF, *i.e.*, a Gaussian kernel: $\frac{1}{\pi \Sigma_{r,v}^2} \exp\left(-\frac{u^2 + v^2}{2\Sigma_{r,v}^2}\right)$

DAIF-Net

• Motivation:

- from the AIF image and the depth: J_F =
- the reverse process of previous equation:
- Ill-posed problem: calculating two variables from one input.
- **Solution:** Taking advantage from the focal stack:
 - equation.

• The optical model depicts the forward process of generating defocus image

$$= \mathscr{G}_F(I,D).$$

• The DAIF-Net predicts depth and AIF image from the focal stack, which is

 $\{I, D\} = \mathcal{D}(J_F)$

 $\{I, D\} = \mathscr{D}(J_E^0, J_E^1, \cdots, J_E^k)$

The accurate depth map and AIF image is the only solution to this

DAIF-Net

• Goal: Estimate the depth map and the AIF image from a focal stack.

• Architecture:

- Modified U-Net encoder:
 - Each image pass through the same encoder and bottleneck.
 - The features will be fused across the inputs for decoding and skip connections.
- Layer-wise global pooling:
 - Leverage sharpness as the link between depth and AIF.
 - Emphasize sharper regions in the multiinput encoder.

Empirical Results: Synthetic Dataset Re-rendered DefocusNet Dataset

Regular Methods $\delta 1 \uparrow$ RMSE $\delta 2 \uparrow$ $\delta 3 \uparrow$ Super 0.912 0.194 DefocusNet [15] 0.967 0.983 DFF-FV [27] 0.883 0.953 0.231 0.980 0.977 0.219 DFF-DFV [27] 0.921 0.990 Self-sup 0.746 0.883 0.938 0.351 Ours

		0.5m									
\downarrow	AbsRel↓	$\delta 1 \uparrow$	$\delta 2\uparrow$	$\delta3\uparrow$	RMSE↓	AbsRel↓					
rvised Learning											
	0.090	0.911	0.933	0.938	0.062	0.069					
	0.107	0.977	0.996	0.999	0.023	0.032					
	0.104	0.976	0.996	0.999	0.023	0.031					
pervised Learning											
	0.177	0.889	0.987	0.992	0.072	0.138					

Empirical Results: Synthetic Defocus Blur NYUv2

Methods	Input	$\delta 1 \uparrow$	$\delta 2\uparrow$	$\delta3\uparrow$	RMSE↓	AbsRel↓				
Analytical Methods										
Moeller et al. [16]	focal stack	0.670	0.778	0.912	0.985	0.263				
Suwajanakorn, Hernandez, and Seitz [22]	focal stack	0.688	0.802	0.917	0.950	0.250				
Self-sup w/AIF										
Gur and Wolf [8]	in-focus	0.720	0.887	0.951	0.649	0.184				
Defocus-Net [14]	defocus	0.732	0.887	0.951	0.623	0.176				
Focus-Net [14]	focal stack	0.748	0.892	0.949	0.611	0.172				
Supervised Learning										
DFF-FV [27]	focal stack	0.956	0.979	0.988	0.285	0.470				
DFF-DFV [27]	focal stack	0.967	0.980	0.990	0.232	0.445				
Fully Self-Supervised Learning										
Ours	focal stack	0.950	0.979	0.987	0.325	0.170				

Empirical Results: Real Focal Stack Dataset Mobile Depth

Image

Ours AIF

MobileDFF

Conclusion

• Limitation:

• Our framework is more suitable for closed scenes and textured scenes, where the defocus blurs are easier to be observed.

• Contribution:

- We design a more realistic and challenging scenario for the DFD, where only focal stacks are available in model training and evaluation.
- We propose the first completely self-supervised framework for DFD. The framework predicts depth and AIF images simultaneously from a focal stacks and is supervised by reconstructing the input.
- Our framework performs favorably against the supervised state-of-the-art methods, providing a strong baseline for future self-supervised DFD tasks.

Thanks for Watching!

Scan for More Information