

DINN360: Deformable Invertible Neural Network for Latitude-aware 360° Image Rescaling

Yichen Guo[†], Mai Xu[†], Lai Jiang^{†‡}, and Leonid Sigal[‡], Yunjin Chen [†] Beihang University, Beijing, China; [‡] University of British Columbia, Vancouver, Canada {yichenguo, MaiXu, cindydeng}@buaa.edu.cn

Paper tag: THU-PM-087

Quick intro: 360° image rescaling

• Motivation and Contributions

Contributions:

- ① We find how the low-level characteristics of 360° images change along with its latitude, benefiting the designs of our method.
- 2 We propose a novel INN framework for 360° image rescaling, with the developed invertible deformable blocks to handle various spherical deformations.
- ③ We develop a latitude-aware conditional mechanism in our framework, to better preserve the high-frequency component of 360° images in a latitude-aware manner.

Background

• Image rescaling: $HR \rightarrow LR \rightarrow HR$

• **360** • **Images:** an omnidirectional view

Non-uniform mapping

Equiangular projection (ERP)

• Finding 1: In 360° images, low-latitude regions tend to contain more textures, leading to larger HF components.

• Finding 2: In 360° images, the larger HF components at low-latitude regions result in worse rescaling performance for the existing 2D rescaling methods.

Analysis

Method

• Pipeline of DINN360

- (1) Deformable downscaling $\hat{\mathbf{x}} \rightarrow [\mathbf{y}; \mathbf{h}]$: downscales the HR image $\hat{\mathbf{x}}$ into LR image \mathbf{y} and HF component \mathbf{h} by invertible deformable (ID) blocks.
- (2) Latitude-aware HF projection [y; h] → z: projects the split HF component h into latent variable z, which is conditional on LR image y.
- (3) Reverse upscaling [y; ž] → x: recovers the HF component h and upscales the LR image into reconstructed HR image x by reversely passing stage (1) and stage (2).

Method

• Deformable Swin Transformer (DST) Module

(a) Affine functions in ID block: The functions are built in a deformable manner, upon the residual structure with deformable convolution (DConv) layers and the developed deformable swin transformer (DST) modules.

(b) Deformable swin transformer module: The referenced sampling points are scaled and shifted into deformed points by the scale head and offset head, which is used to produce the deformable token **q**.

Method

• Backflow training protocol

Algorithm 1: Training process for 2× rescaling. **Input:** HR image $\hat{\mathbf{x}}$, LR image $\hat{\mathbf{y}}$ and distortion map $\hat{\mathbf{c}}^{lat}$. **Output:** Trained $I_{\rm D}(\cdot) I_{\rm P}(\cdot)$ and $G_{\rm SC}(\cdot)$. **Variables:** Training variables Φ , latent variables $\mathbf{z}, \mathbf{\tilde{z}}$. **Parameters:** $\lambda_{\rm H}, \lambda_{\rm L}, \lambda_{\rm z}, \alpha$ and learning rate lr. Initialize Φ with Gaussian initialization. 2 while Step < max steps do $\mathbf{y}, \mathbf{h} = I_{\mathrm{D}}(\hat{\mathbf{x}}).$ 3 $\mathbf{c} = [\mathbf{c}^{\mathrm{con}}, \mathbf{c}^{\mathrm{lat}}] = G_{\mathrm{SC}}(\mathbf{y}).$ 4 if Step < backflow steps then 5 $\widetilde{\mathbf{h}} = I_{\mathbf{P}}^{-1}(\widetilde{\mathbf{z}}, \mathbf{c}).$ 6 $\mathbf{h} = \alpha \widetilde{\mathbf{h}} + (1 - \alpha)\mathbf{h}.$ 7 8 end $\mathbf{z} = I_{\mathrm{D}}(\mathbf{h}, \mathbf{c}).$ 9 $\widetilde{\mathbf{h}} = I_{\mathbf{P}}^{-1}(\widetilde{\mathbf{z}}, \mathbf{c}).$ 10 $\begin{aligned} \mathbf{x} &= I_{\mathrm{D}}^{-1}(\mathbf{y}, \widetilde{\mathbf{h}}). \\ \mathcal{L} &= \lambda_{\mathrm{H}} \ell_1(\mathbf{x}, \hat{\mathbf{x}}) + \lambda_{\mathrm{L}} \ell_2(\mathbf{y}, \hat{\mathbf{y}}) + \lambda_{\mathbf{z}} \ell_2(\mathbf{z}, \widetilde{\mathbf{z}}). \\ \Phi &\leftarrow \Phi - lr \cdot \nabla_{\Phi} \mathcal{L}. \end{aligned}$ 11 12 13 end 14 return Φ .

For better training INN:

- (1) Inspired by the proportional feedback in PID control;
- (2) Regarding the forward and reverse model together as an invertible system;
- (3) Minimize the gap between the generated and sampled latent variable.

• Quantitative results

Scale	Method	ODISR [4]	SUN360 [38]	F-360iSOD [42]	YouTube360 [27]	
	Bicubic	29.46 ± 2.54 / 86.23 ± 5.05	30.06 ± 2.46 / 87.92 ± 4.85	30.68 ± 4.53 / 87.43 ± 7.23	34.93 ± 4.92 / 94.82 ± 4.47	
2×	Bilinear	28.94 ± 2.45 / 83.15 ± 5.83	29.39 ± 2.40 / 85.09 ± 6.08	29.97 ± 4.23 / 84.61 ± 8.61	$33.20 \pm 4.21 / 9.255 \pm 6.06$	
	Lanczos	28.58 ± 2.54 / 84.04 ± 5.57	29.16 ± 2.47 / 85.72 ± 5.48	29.86 ± 4.56 / 85.44 ± 8.11	34.26 ± 5.13 / 93.95 ± 5.24	
	Bicubic & 360SR [28]	27.05 ± 2.36 / 80.46 ± 4.32	27.69 ± 2.20 / 81.55 ± 4.87	26.08 ± 4.17 / 78.08 ± 5.39	32.12 ± 3.77 / 89.84 ± 4.85	
	Bicubic & 360SISR [27]	30.81 ± 2.90 / 87.44 ± 5.17	$32.72 \pm 2.79 / 90.53 \pm 5.10$	31.33 ± 4.81 / 89.63 ± 6.28	$37.62 \pm 5.21 / 96.23 \pm 5.08$	+0.19~0.67dF
	TAD & TAU [16]	35.84 ± 3.28 / 96.12 \pm 8.12	37.70 ± 2.68 / 97.17 ± 1.10	33.94 ± 5.11 / 93.87 ± 4.47	39.50 ± 4.08 / 98.22 ± 1.00	
	CAR & EDSR [22, 32]	$33.00 \pm 3.51 / 91.31 \pm 4.41$	35.68 ± 3.37 / 93.91 ± 4.07	35.38 ± 5.48 / 93.05 ± 5.09	40.49 ± 5.24 / 97.75 ± 2.55	
	IRN [39]	$40.51 \pm 3.52 / 98.63 \pm 0.71$	$42.72 \pm 2.73 / 99.11 \pm 0.32$	39.83 ± 5.74 / 97.83 ± 2.05	$46.15 \pm 4.02 / 99.50 \pm 0.32$	
	HCFlow [21]	$42.05 \pm 3.79 / 99.02 \pm 0.57$	$45.05 \pm 3.00 / 99.49 \pm 0.24$	$\underline{40.53 \pm 5.78 / 97.92 \pm 1.99}$	$50.56 \pm 3.07 / 99.71 \pm 0.10$	
	DINN360	$42.64 \pm 3.87 / 99.13 \pm 0.52$	$45.72 \pm 3.00/99.56 \pm 0.21$	$40.77 \pm 5.88 / 97.93 \pm 2.21$	$50.75 \pm 3.07 / 99.73 \pm 0.10$	
	Bicubic	25.39 ± 2.28 / 72.27 ± 7.45	25.38 ± 2.33 / 73.75 \pm 8.83	$26.16 \pm 3.91 / 73.75 \pm 12.38$	$28.29 \pm 3.80 / 83.73 \pm 10.58$	
	Bilinear	26.24 ± 2.27 / 72.96 ± 7.54	26.22 ± 2.29 / 74.72 \pm 8.85	26.85 ± 3.78 / 74.30 \pm 12.38	$28.92 \pm 3.53 / 83.94 \pm 10.44$	
	Lanczos	24.97 ± 2.28 / 70.69 \pm 7.64	$24.99 \pm 2.33 / 71.95 \pm 9.05$	25.77 ± 3.94 / 72.10 ± 12.84	27.97 ± 3.85 / 82.65 ± 11.02	
	Bicubic & 360SR	25.42 ± 2.26 / 71.06 \pm 6.89	25.42 ± 2.16 / 72.46 \pm 8.64	25.19 ± 3.69 / 70.79 \pm 9.83	28.43 ± 3.26 / 83.06 ± 9.36	
4.4	Bicubic & 360SISR	27.03 ± 2.45 / 76.15 \pm 7.97	27.81 ± 2.44 / 80.45 ± 9.39	27.45 ± 4.35 / 78.79 \pm 11.66	30.96 ± 3.87 / 89.36 ± 10.75	10 24 0 57 11
4×	TAD & TAU	28.98 ± 2.51 / 82.69 ± 5.91	29.70 ± 2.47 / 84.86 ± 6.21	28.71 ± 4.55 / 81.34 ± 10.40	33.24 ± 4.61 / 92.48 ± 6.08	+0.24~0.5/01
	CAR & EDSR	29.61 ± 2.86 / 82.82 ± 6.76	31.32 ± 2.82 / 86.60 ± 7.49	31.33 ± 4.94 / 85.30 ± 9.10	34.85 ± 4.69 / 93.08 ± 6.45	
	IRN	30.86 ± 3.06 / 87.47 ± 5.56	32.69 ± 2.92 / 90.41 ± 5.41	32.58 ± 5.19 / 88.95 ± 7.29	36.85 ± 4.78 / 95.86 ± 4.07	
	HCFlow	$31.48 \pm 3.16 / 89.07 \pm 5.02$	$33.62 \pm 3.03 / 92.00 \pm 4.78$	32.40 ± 5.79 / 88.44 ± 8.85	$40.31 \pm 4.44 / 97.72 \pm 2.13$	
	DINN360	$31.92 \pm 3.26 / 89.90 \pm 4.82$	$34.19 \pm 3.12 / 92.77 \pm 4.48$	32.93 ± 5.90 / 89.34 ± 8.82	$40.55 \pm 4.29/97.89 \pm 1.89$	
	Bicubic	23.25 ± 2.19 / 64.10 \pm 8.64	22.92 ± 2.21 / 65.18 ± 10.24	23.45 ± 3.48 / 64.12 ± 15.04	24.98 ± 3.06 / 74.70 \pm 12.89	
	Bilinear	24.16 ± 2.19 / 65.35 ± 8.65	23.81 ± 2.19 / 66.77 \pm 10.20	24.25 ± 3.41 / 65.42 ± 14.89	25.78 ± 2.96 / 75.86 ± 12.65	
	Lanczos	22.95 ± 2.19 / 63.15 ± 8.68	22.65 ± 2.21 / 63.98 ± 10.27	23.19 ± 3.49 / 63.05 ± 15.18	24.77 ± 3.08 / 73.78 \pm 13.03	
	Bicubic & 360SR	23.61 ± 2.06 / 64.15 ± 8.53	23.28 ± 2.17 / 65.11 ± 10.14	23.19 ± 3.17 / 63.30 ± 13.68	25.02 ± 2.85 / 78.19 \pm 12.37	
	Bicubic & 360SISR	24.63 ± 2.26 / 67.75 ± 8.99	24.56 ± 2.27 / 70.80 ± 10.66	24.53 ± 3.62 / 68.64 ± 14.76	$26.28 \pm 3.01/80.02 \pm 12.73$	
$8 \times$	Bicubic & LAU-Net [4]	24.37 ± 2.22 / 66.64 ± 8.83	24.21 ± 2.26 / 69.37 \pm 10.63	24.18 ± 3.57 / 66.94 ± 14.99	25.81 ± 2.94 / 77.33 \pm 12.61	+0.35~0.74dI
	TAD & TAU	$26.36 \pm 2.30 / 71.36 \pm 7.86$	$26.50 \pm 2.33 / 73.43 \pm 9.36$	$25.94 \pm 4.10 / 70.35 \pm 14.15$	$28.36 \pm 3.46 / 81.61 \pm 11.04$	
	CAR & EDSR	25.97 ± 2.38 / 69.40 \pm 8.82	26.40 ± 2.42 / 72.77 ± 10.75	$26.87 \pm 4.12 / 71.19 \pm 14.36$	27.98 ± 3.44 / 79.83 \pm 11.27	
	IRN	$28.06 \pm 2.72 / 77.41 \pm 8.12$	29.48 ± 2.74 / 82.02 ± 9.66	29.55 ± 4.89 / 80.03 ± 11.87	32.16 ± 4.24 / 89.01 ± 9.30	1
	HCFlow	$\underline{28.25 \pm 2.76 / 78.20 \pm 8.00}$	$\underline{29.77 \pm 2.77 / 82.84 \pm 9.42}$	29.83 ± 4.94 / 80.98 ± 11.47	$\underline{34.19 \pm 4.02 / 91.78 \pm 7.14}$	
	DINN360	$28.60 \pm 2.86 \textit{/} 79.17 \pm 7.98$	30.36 ± 2.87 / 84.02 ± 9.36	$30.29 \pm 5.13 / 82.07 \pm 11.22$	34.93 ± 4.17 / 92.58 ± 6.83	

• Qualitative results

• Qualitative results

Experiments

• Ablation results

	Ablation settings	WS-PSNR	WS-SSIM
ID block	w/o DST module	31.79 ± 3.14	89.68 ± 4.17
ID DIOCK	w/o deform	31.83 ± 3.63	89.75 ± 4.29
ID block	w/o latitude head	31.85 ± 3.21	89.74 ± 4.31
IF DIOCK	w/o content head	31.76 ± 3.21	89.56 ± 4.08
backflow	w/o feedback	31.85 ± 3.32	89.83 ± 4.27
-	DINN360	31.92 ± 3.26	$\textbf{89.90} \pm \textbf{4.82}$

Hyper-parameter values:

- (1) Number of ID/IP blocks;
- (2) Feedback ratio of backflow training protocol

Ablation studies:

- (1) ID/IP block: deformable and latitude-aware
- (2) Backflow: feedback protocol

Thanks

Contact us

Multimedia Computing Towards Communications

(MC2) Lab

http://buaamc2.net/

Email: yichenguo@buaa.edu.cn

