

CVPR 2023 Highlight

Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization

Zifan Wang

Nan Ding, Tomer Levinboim, Xi Chen, Radu Soricut

CMU

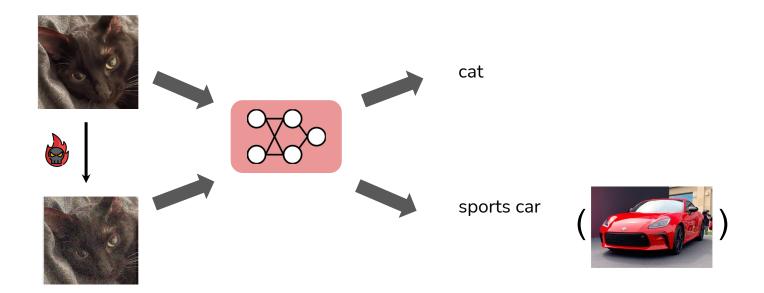
Google Research

zifan@cmu.edu

dingnan@google.com

Poster Session: WED-PM-391

Background

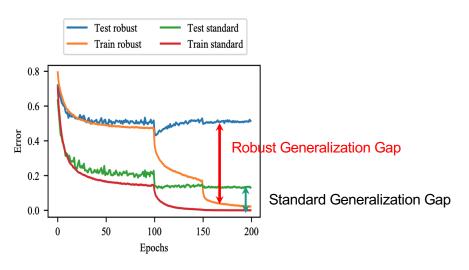


Deep models are often vulnerable to small **adversarial perturbations** that are unlikely to fool humans.

Background

Benign data training Adversarial data

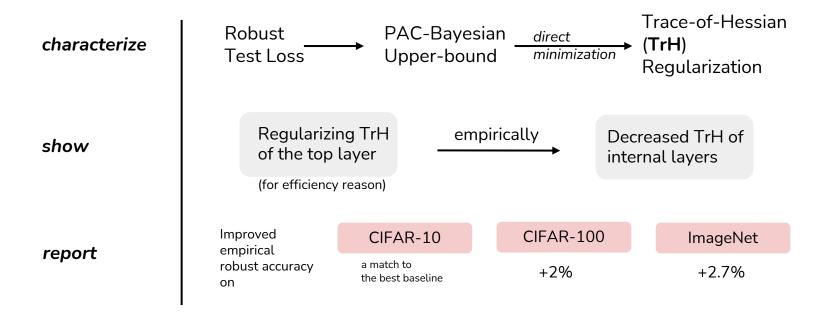
(e.g. PGD [Madry et al. (2017)], TRADES [Zhang et al. (2019)] and etc.)



[Rice et al. 2019]

Contributions

Our goal is to improve robust generalization. We



PAC-Bayesian Bound

Assumption

Applying PAC-Bayesian Bound to Test Robust Loss

$$\theta \sim \mathcal{P} = \mathcal{N}(\mathbf{0}, I\sigma_0^2)$$

A Prior distribution of Network weights (independent on data and training algorithm)

 $\theta \sim Q$, and Q is product of univariate Gaussians $\mathcal{N}(\mu, \Sigma)$

Posterior distribution of Network weights (dependent on data and training algorithm)

With a probability $1 - \tau$, the following holds true:

$$\mathbb{E}_{\theta \sim \mathcal{Q}} R(\theta) \leq \mathbb{E}_{\theta \sim \mathcal{Q}} \widehat{R}(\theta) + \frac{1}{\beta} \mathit{KL}(\mathcal{Q}||\mathcal{P}) + \mathit{C}(\tau,\beta,m)$$
 test robust loss train robust loss Quantity independent of \mathcal{Q}

Direct Minimization of PAC-Bayesian Bound

PAC-Bayesian Bound for Test Robust Loss

Minimized Bound

(Theorem 3)

If $\mathcal{P}=\mathcal{N}(\mathbf{0},\sigma_0^2),$ and \mathcal{Q} is also a product of univariate Gaussian distributions, then

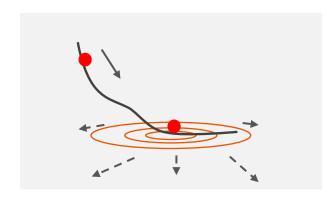
$$\mathbb{E}_{\theta \sim \mathcal{Q}} R(\theta) \leq \mathbb{E}_{\theta \sim \mathcal{Q}} \widehat{R}(\theta) + \frac{1}{\beta} KL(\mathcal{Q}||\mathcal{P}) + \mathcal{C}(\tau,\beta,m)$$
 test robust loss train robust loss Quantity independent of Q

By solving the minimization w.r.t Q (i.e. w.r.t. μ and Σ)

$$\min_{\mathcal{Q}} \mathbb{E}_{\theta \sim \mathcal{Q}} R(\theta) \leq \min_{\mathcal{Q}} \left\{ \mathbb{E}_{\theta \sim \mathcal{Q}} \widehat{R}(\theta) + \frac{1}{\beta} KL(\mathcal{Q}||\mathcal{P}) \right\} + C(\tau, \beta, m)
= \min_{\mu} \left\{ \widehat{R}(\mu) + \frac{||\mu||^2}{2\beta\sigma_0^2} + \frac{\sigma_0^2}{2} \mathbf{Tr}(\nabla_{\mu}^2(\widehat{\mathbf{R}}(\mu))) \right\} + C(\tau, \beta, m) + O(\sigma_0^4)$$

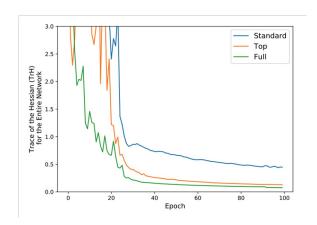
Effects of Trace-of-Hessian (TrH) Regularization

Flat Minimum



Trace of Hessian (TrH) is the sum of curvatures (under assumption of convexity of the loss in all directions.

Inductive Impacts from top to the bottom



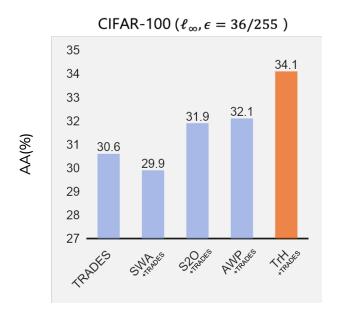
Regularizing TrH for top layer only

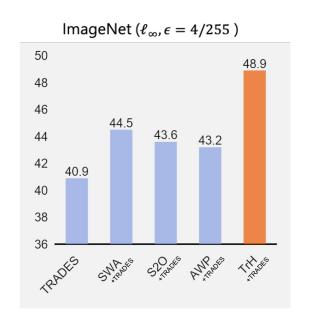
Decreased TrH for internal layers

(greater details in Theorem 4 and Example 1)

Results (see the full table in paper)

AutoAttack Accuracy(AA): percentage of test data that is both accurate and robust evaluated with AutoAttack¹.





Poster Session

June 21, 2023 WED-PM-391