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Preview



Preview - Orthogonal Planes
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Preview - Mixture Laplace Loss
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Preview - Self-distillation
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Details



• The widely used resizing cropping augmentation cause ground slopes.
• We assume that the camera intrinsics remain consistent.

Details - Ground



• Rectify the ground planes to ensure that they are always parallel to the ground.

Plane Definition:

Rectifying Matrix:

Rectified Parameters:
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• Rectify the ground planes to ensure that they are always parallel to the ground.
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• Ground depth candidates of each pixel vary due to rectification.
• Make it hard to learn
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Details - Ground



• Input the parameters of resizing cropping during training.
• Tell the CNN how the rectification is.
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• Input the parameters of resizing cropping during training.
• Tell the CNN how the rectification is.

IOU 53.6%
Roughness 0.162
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Details - Ground



Forget About the LiDAR: Self-Supervised Depth Estimators with MED Probability Volumes [Gonzalez et al. 2020]
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Details - Mixture Laplace Loss



• It is non-trivial to compute L1 loss on the synthetic image.
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• Compute photometric error on each warped plane before composing.

• Mixture Laplace Distribution
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Post-process and Self-distillation

• Self-distillation [Gonzalez et al. 2020]:
• Solve occlusion effect
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Self-distillation [Gonzalez et al. 2020]

• If we only input left views and find matchings in the right view,  all artifacts 
caused by occlusion will appear at left of objects.



Self-distillation [Gonzalez et al. 2020]

• If we only input left views and find matchings in the right view,  all artifacts 
caused by occlusion will appear at left of objects.
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Self-distillation [Gonzalez et al. 2020]
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Post-process and Self-distillation

• Post-process [Godard et al. 2017]:
• Improve results
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Post-process and Self-distillation
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Results



Results



Thanks!

Email: wangry3@shanghaitech.edu.cn

Github: https://github.com/svip-lab/PlaneDepth
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