







# PlaneDepth: Self-supervised Depth Estimation via Orthogonal Planes

Authors: Ruoyu Wang, Zehao Yu, Shenghua Gao





Email: wangry3@shanghaitech.edu.cn

Github: https://github.com/svip-lab/PlaneDepth

# Preview

#### Preview - Orthogonal Planes

Frontal-parallel Planes





Frontal-parallel Planes





Orthogonal Planes



#### Preview - Mixture Laplace Loss





#### Preview - Self-distillation



# Details

- The widely used resizing cropping augmentation cause ground slopes.
  - We assume that the camera intrinsics remain consistent.



• Rectify the ground planes to ensure that they are always parallel to the ground.



• Rectify the ground planes to ensure that they are always parallel to the ground.



- Ground depth candidates of each pixel vary due to rectification.
  - Make it hard to learn



- Input the parameters of resizing cropping during training.
  - Tell the CNN how the rectification is.



- Input the parameters of resizing cropping during training.
  - Tell the CNN how the rectification is.





#### Details - Mixture Laplace Loss



Forget About the LiDAR: Self-Supervised Depth Estimators with MED Probability Volumes [Gonzalez et al. 2020]

# Details - Mixture Laplace Loss

• It is non-trivial to compute L1 loss on the synthetic image.



# Details - Mixture Laplace Loss

• Compute photometric error on each warped plane before composing.



• Mixture Laplace Distribution

$$\int_{\{d_1, d_2, ..., d_n\}} L = -\log \sum \frac{\widehat{\pi_i} e^{\frac{-||\widehat{I_i} - I_r||}{\widehat{\sigma_i}}}}{2\widehat{\sigma_i}} \qquad p_i = \sum \frac{\widehat{\pi_j} e^{\frac{|d_i - d_j|}{\widehat{\sigma_j}}}}{2\widehat{\sigma_j}}$$
  
Depth Candidates

# Post-process and Self-distillation

- Self-distillation [Gonzalez et al. 2020]:
  - Solve occlusion effect



Occlusion only occurs on the left side of objects in the left view.

Input



Loss

# Self-distillation [Gonzalez et al. 2020]

• If we only input left views and find matchings in the right view, all artifacts caused by occlusion will appear at left of objects.



# Self-distillation [Gonzalez et al. 2020]

• If we only input left views and find matchings in the right view, all artifacts caused by occlusion will appear at left of objects.



# Self-distillation [Gonzalez et al. 2020]



$$d_{sd} = M * d + (1 - M) * d_{ff}$$

# Post-process and Self-distillation

- Post-process [Godard et al. 2017]:
  - Improve results

$$d_{
m pp} = rac{1}{2}(d+d_{
m ff})$$



#### Post-process and Self-distillation



#### Results

| Methods                      | PP           | Network     | Resolution | Train | Abs Rel↓ | Sq Rel↓ | RMSE↓ | RMSE log↓ | A1↑   | A2↑   | A3↑   |
|------------------------------|--------------|-------------|------------|-------|----------|---------|-------|-----------|-------|-------|-------|
| Raw Eigen Test Set [8]       |              |             |            |       |          |         |       |           |       |       |       |
| Monodepth2 [12]              | $\checkmark$ | ResNet-50   | 1024×320   | S     | 0.097    | 0.793   | 4.533 | 0.181     | 0.896 | 0.965 | 0.983 |
| DepthHint [40]               | $\checkmark$ | ResNet-50   | 1024×320   | S     | 0.096    | 0.710   | 4.393 | 0.185     | 0.890 | 0.962 | 0.981 |
| EPCDepth [29]                | $\checkmark$ | ResNet-50   | 1024×320   | S     | 0.091    | 0.646   | 4.207 | 0.176     | 0.901 | 0.966 | 0.983 |
| OCFDNet [48]                 | $\checkmark$ | ResNet-50-A | 1280×384   | S     | 0.090    | 0.564   | 4.007 | 0.172     | 0.903 | 0.967 | 0.984 |
| FALNet [14]                  |              | FALNet      | 1280×384   | S     | 0.097    | 0.590   | 3.991 | 0.177     | 0.893 | 0.966 | 0.984 |
| FALNet [14]                  | $\checkmark$ | FALNet      | 1280×384   | S     | 0.093    | 0.564   | 3.973 | 0.174     | 0.898 | 0.967 | 0.985 |
| PLADENet [13]                |              | PLADENet    | 1280×384   | S     | 0.092    | 0.626   | 4.046 | 0.175     | 0.896 | 0.965 | 0.984 |
| PLADENet [13]                | $\checkmark$ | PLADENet    | 1280×384   | S     | 0.089    | 0.590   | 4.008 | 0.172     | 0.900 | 0.967 | 0.985 |
| Ours                         |              | ResNet-50-A | 1280×384   | S     | 0.085    | 0.563   | 4.023 | 0.171     | 0.910 | 0.968 | 0.984 |
| Ours                         | $\checkmark$ | ResNet-50-A | 1280×384   | S     | 0.084    | 0.549   | 3.981 | 0.169     | 0.911 | 0.968 | 0.984 |
| Ours†                        | $\checkmark$ | ResNet-50-A | 1280×384   | S     | 0.083    | 0.533   | 3.919 | 0.167     | 0.913 | 0.969 | 0.985 |
| Monodepth2 [12]              | $\checkmark$ | ResNet-18   | 1024×320   | MS    | 0.104    | 0.775   | 4.562 | 0.191     | 0.878 | 0.959 | 0.981 |
| DepthHint [40]               | $\checkmark$ | ResNet-18   | 1024×320   | MS    | 0.098    | 0.702   | 4.398 | 0.183     | 0.887 | 0.963 | 0.983 |
| FeatureNet [36]              |              | ResNet-50   | 1024×320   | MS    | 0.099    | 0.697   | 4.427 | 0.184     | 0.889 | 0.963 | 0.982 |
| Ours*                        |              | ResNet-50-A | 1280×384   | MS    | 0.092    | 0.601   | 4.188 | 0.184     | 0.893 | 0.961 | 0.981 |
| Ours*                        | $\checkmark$ | ResNet-50-A | 1280×384   | MS    | 0.090    | 0.584   | 4.130 | 0.182     | 0.896 | 0.962 | 0.981 |
| Improved Eigen Test Set [39] |              |             |            |       |          |         |       |           |       |       |       |
| Monodepth2 [12]              | $\checkmark$ | ResNet-50   | 1024×320   | S     | 0.077    | 0.455   | 3.489 | 0.119     | 0.933 | 0.988 | 0.996 |
| DepthHint [40]               | $\checkmark$ | ResNet-50   | 1024×320   | S     | 0.074    | 0.364   | 3.202 | 0.114     | 0.936 | 0.989 | 0.997 |
| OCFDNet [48]                 | $\checkmark$ | ResNet-50-A | 1280×384   | S     | 0.070    | 0.262   | 2.786 | 0.103     | 0.951 | 0.993 | 0.998 |
| FALNet [14]                  | $\checkmark$ | FALNet      | 1280×384   | S     | 0.071    | 0.281   | 2.912 | 0.108     | 0.943 | 0.991 | 0.998 |
| PLADENet [13]                | $\checkmark$ | PLADENet    | 1280×384   | S     | 0.066    | 0.272   | 2.918 | 0.104     | 0.945 | 0.992 | 0.998 |
| Ours                         |              | ResNet-50-A | 1280×384   | S     | 0.063    | 0.245   | 2.718 | 0.096     | 0.959 | 0.994 | 0.998 |
| Ours                         | $\checkmark$ | ResNet-50-A | 1280×384   | S     | 0.063    | 0.236   | 2.674 | 0.095     | 0.960 | 0.994 | 0.999 |
| Ours†                        | $\checkmark$ | ResNet-50-A | 1280×384   | S     | 0.062    | 0.227   | 2.609 | 0.093     | 0.961 | 0.995 | 0.999 |

#### Results



# Thanks!

Email: wangry3@shanghaitech.edu.cn

Github: https://github.com/svip-lab/PlaneDepth