

Ambiguous Medical Image Segmentation using Diffusion Models

Aimon Rahman^l, Jeya Maria Jose Valanarasu^l, Ilker Hacihaliloglu², Vishal M Patel^l

Johns Hopkins University¹, University of British Columbia²

Background

Deterministic

Probabilistic

Unlike natural images, ground truths are not deterministic in medical images as different diagnosticians can have different opinions on the type and extent of an anomaly.

Background

Existing Probabilistic Networks

c-VAE-based methods incorporate prior information about the input image in a separate network and sample latent variables to produce stochastic segmentation masks

Background

Problem with Evaluation Metrics (GED)

Generalized Energy Distance (GED) metric **overly rewards sample diversity** without considering the match with ground truth samples

Contribution

- We introduce a **diffusion model-based approach** that generates multiple plausible segmentation masks by learning a distribution over group insights.
- The proposed model utilizes diffusion's **stochastic sampling** process to produce diverse segmentation variants with minimal additional learning.
- The model's effectiveness is demonstrated on **CT**, **ultrasound**, **and MRI** images, outperforming existing state-of-the-art methods in accuracy and preserving natural variation.
- A **new metric** is proposed to evaluate both segmentation diversity and accuracy, catering to the interests of clinical practice and collective insights.

Method

<u>CI Score - Intuition</u>

- The proposed CI score (Collective Insight) addresses the limitations of GED and consists of three components: **Combined Sensitivity, Maximum Dice Matching, and Diversity Agreement.**
- Combined Sensitivity measures the true positive rate of the combined predictions and ground truths, aligning with clinical practice objectives.
- Maximum Dice Matching calculates the maximum Dice score between individual predictions and all ground truths, representing the comparison of student diagnoses with expert opinions.
- Diversity Agreement assesses the diversity of predicted outputs by comparing the variance between ground truth and prediction distributions.
- The CI score is defined as the harmonic mean of the combined sensitivity, maximum Dice matching, and diversity agreement components.

CI Score - Mechanism

a) Combined Sensitivity

Results

Table 1. Comparison of quantitative results in terms of GED, CI, and D_{max} for all the datasets with state-of-the-art ambiguous segmentation networks. The best results are in **Bold** and we achieve state-of-the-art results in terms of D_{max} and CI score across all datasets.

Method	LIDC-IDRI [4]			Bone	e Segment	ation	MS-Lesion [12]			
	GED (\downarrow)	CI (↑)	$D_{max}(\uparrow)$	GED (\downarrow)	CI (↑)	$D_{max}(\uparrow)$	GED (\downarrow)	CI (↑)	$D_{max}(\uparrow)$	
Probabilistic Unet [29]	0.353	0.731	0.892	0.390	0.738	0.844	0.749	0.514	0.502	
PHi-Seg [8]	0.270	0.736	0.904	0.312	0.7544	0.848	0.681	0.518	0.506	
Generalized Probabilistic U-net [10]	0.299	0.707	0.905	0.289	0.7501	0.863	0.678	0.522	0.513	
CIMD (Ours)	0.321	0.759	0.915	0.295	0.7578	0.889	0.733	0.560	0.562	

Results

Input	t Ground Truth				I	Probabilistic Unet				PHi-Seg				Ours			
Se la			×			9	¢			4	•				4		
	۳	۲	٣	*	۲	۲	۲			٠	٠	٠	•	*	۲	٠	
X,		\$,	*	,			r	,	•				
					' •	۰,		•			•						

Input	Ground Truth				Probabilistic Unet			PHi-Seg				Ours				
28						$\widehat{}$	• ~									
10/						(1									$\widehat{}$
	($\left(\right)$,-					-	-			-1	(ر ا
116	(1	1	~		(1	1	1	1	1	~	1	1	1	1

Input			
Ground Truth	e	De De	
Prob-Unet	4 4 ×		
PHi-Seg	4 1		· · ·
CIMD	v v v v		

Results

	Input	Prob-Unet	CIMD	Input	PHi-Seg	CIMD	Input	Prob-Unct	CIMD	Input	PHi-Seg	CIMD
	3			B	•	\$	Ø.		٠		÷	3
	ŧ		4		- N.	٠		٠	٠		٤	*
ound Truth		•		Lund Truth	~		and Truth	6		ound Truth	4	٠
5	ų	٩	•	5			• Ou	٠	•	♦	÷	
					•	Ŧ	ę.		٠		٠	*
			4		2	•		е.			4	*
					~			۰.	٠		4	
		- E			~	•		٠			÷	
		٩	¢		•			٠			4	٠
			ı		*	~		6	۴			
		٩.			Ť			٠			•	
		×.			~			٠	٠		÷	4
		•	٩		•	~					÷	
			t		•			٠				*
		t	(*		•			٤	
		۹.	ł			*		•				4
										-		_

	Input	Prob-Unet	CIMD	Input	PHi-Seg	CIMD	Input	Prob-Unet	CIMD	Input	PHi-Seg	CIMD
				20			Trail 1	^	-	X	~	~
		~~~~		(		(	^	<b>^</b> •	~		~	-
round Truth				round Truth			round Truth	<b>^</b> .	^	ound Truth	~	~
9				°	-		6	<b>^</b>	^	0	-	~
							^	<b>^</b>	(	$\sim$	~	~
						~		<b>^</b>	1		<u>_</u>	~
						-		<b>^</b>	(		(	~
								~ `	~		~	~
					~			<b>^</b>	1		-	~
					-				~		-	~
								-	^		~	-
		20			_	,		^	^		~	~
					1	(		<b>^</b>	-		-	~
		20				-		^	1		~	~
		i agricare						-	1		(	~
					-	-		<b>^</b>	-		~	~





Thank You