

Twin Contrastive Learning with Noisy Labels

<u>Zhizhong Huang</u>¹ Junping Zhang¹ Hongming Shan^{2,3,*}

¹Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai 200433, China ²Institute of Science and Technology for Brain-inspired Intelligence and MOE Frontiers Center for Brain Science Fudan University, Shanghai 200433, China ³Shanghai Center for Brain Science and Brain-inspired Technology, Shanghai 201210, China Code is available at https://github.com/Hzzone/TCL

- Background 1.
- 2. The Proposed TCL
 - Modeling Data Distribution
 - Out-Of-Distribution Label Noise Detection
 - Cross-supervision with Entropy Regularization
 - Learning Robust Representations
- 3. Experiments & Results

Contents

Background

The label noise is produced during labeling process.

app

Unlabeled data set Labeling strategies crowdsourcing Ċ Human/model specialist error, poor quality data, inter-observer variability model

Noisy labeled data set

 Training with mislabeled examples would lead to WRONG decision Boundary

Pictures from Selective-Supervised Contrastive Learning with Noisy Labels (CVPR 2022)

Background

- Previous work usually select the clean samples with small loss trick.
- Small loss trick: the neural network tend to fit the clean samples which has small losses.

Pictures from Unsupervised Label Noise Modeling and Loss Correction (NIPS 2019) and DivideMix: Learning with Noisy Labels as Semi-supervised Learning (ICLR 2020)

Learning from Noisy Data with Robust Representation Learning (ICCV 2021)

Contrastive Learning enables Noisy Label Learning by the Unsupervised Noise-Robust Representations

They cannot handle extremely noisy scenario when Nearest Neighbors are All mislabeled!

Background

Selective-Supervised Contrastive Learning with Noisy Labels (CVPR 2022)

The Proposed TCL

The proposed TCL

(1) leverages contrastive learning for learning robust representations, (2) models the data distribution via a GMM, and (3) detects the examples with wrong labels as out-of-distribution examples.

The Proposed TCL

How to model the data distribution: Given the representation v = f(x) and discrete latent variables $z \in \{1, 2, ..., K\}$, the unsupervised GMM can be defined as

$$egin{aligned} p(oldsymbol{v}) &= \sum_{k=1}^{K} p(oldsymbol{v}, z = k) \ &= \sum_{k=1}^{K} p(z = k) \mathcal{N}(oldsymbol{v} | oldsymbol{\mu}_k, \sigma_k). \end{aligned}$$

$$\boldsymbol{\mu}_{k} = \operatorname{norm} \left(\frac{\sum_{i} p_{\theta}(y_{i} = k | \boldsymbol{x}_{i}) \boldsymbol{v}_{i}}{\sum_{i} p_{\theta}(y_{i} = k | \boldsymbol{x}_{i})} \right), \\ \sigma_{k} = \frac{\sum_{i} p_{\theta}(y_{i} = k | \boldsymbol{x}_{i}) (\boldsymbol{v}_{i} - \boldsymbol{\mu}_{k}) (\boldsymbol{v}_{i} - \boldsymbol{\mu}_{k})^{\mathrm{T}}}{\sum_{i} p_{\theta}(y_{i} = k | \boldsymbol{x}_{i})}$$

The Proposed TCL

Out-Of-Distribution Label Noise Detection

The posterior probability

an be defined as:

$$\gamma_{ik} = \frac{\exp\left(-(\boldsymbol{v}_i - \boldsymbol{\mu}_k)^{\mathrm{T}}(\boldsymbol{v}_i - \boldsymbol{\mu}_k)/2\sigma_k\right)}{\sum_k \exp\left(-(\boldsymbol{v}_i - \boldsymbol{\mu}_k)^{\mathrm{T}}(\boldsymbol{v}_i - \boldsymbol{\mu}_k)/2\sigma_k\right)}$$

$$_{ik} = p(z_i = k | \boldsymbol{x}_i)$$

$$= \exp(\boldsymbol{v}_i^{\mathrm{T}} \boldsymbol{\mu}_k / \sigma_k) / \sum_k \exp(\boldsymbol{v}_i^{\mathrm{T}} \boldsymbol{\mu}_k / \sigma_k)$$

can be defined as:

$$\gamma_{ik} = \frac{\exp\left(-(\boldsymbol{v}_i - \boldsymbol{\mu}_k)^{\mathrm{T}}(\boldsymbol{v}_i - \boldsymbol{\mu}_k)/2\sigma_k\right)}{\sum_k \exp\left(-(\boldsymbol{v}_i - \boldsymbol{\mu}_k)^{\mathrm{T}}(\boldsymbol{v}_i - \boldsymbol{\mu}_k)/2\sigma_k\right)}$$

$$\gamma_{ik} = p(z_i = k | \boldsymbol{x}_i)$$

$$= \exp(\boldsymbol{v}_i^{\mathrm{T}} \boldsymbol{\mu}_k / \sigma_k) / \sum_k \exp(\boldsymbol{v}_i^{\mathrm{T}} \boldsymbol{\mu}_k / \sigma_k)$$

Then, we can introduce the noisy label y and define the following conditional probability to measure the probability of one sample with clean label: $\gamma_{y=z|i} = p(y_i = z_i | \boldsymbol{x}_i)$ $= \exp(\boldsymbol{v}_i^{\mathrm{T}} \boldsymbol{\mu}_{z_i})$

$$\left| \sigma_{{m z}_i}
ight| / \sum_k \exp({m v}_i^{\mathrm{T}} {m \mu}_k / \sigma_k)$$

Out-Of-Distribution Label Noise Detection

Another two-component GMM is employed to automatically classify the clean/wrong labels:

$$p(\gamma_{y=z|i}) = \sum_{c=0}^{1} p(\gamma_{y=z|i}, c) = \sum_{c=0}^{1} p(c)p(\gamma_{y=z|i}|c)$$

where c is the new introduced latent variable: c = 1 indicates the cluster of clean labels with higher mean value and vice versus c = 0.

Cross-supervision with Entropy Regularization

The true targets are the convex combination of its noisy labels and the predictions from the model itself:

$$\begin{cases} \boldsymbol{t}_{i}^{(1)} = w_{i}\boldsymbol{y}_{i} + (1 - w_{i})g(\boldsymbol{x}_{i}^{(1)}) \\ \boldsymbol{t}_{i}^{(2)} = w_{i}\boldsymbol{y}_{i} + (1 - w_{i})g(\boldsymbol{x}_{i}^{(2)}) \end{cases}$$

predictions.

where $w_i \in [0,1] = p(c=1|\gamma_{y=z|i})$, y_i the noisy one-hot label. $g(x_i^{(1)})$ and $g(x_i^{(2)})$ are the

Cross-supervision with Entropy Regularization

The loss can be defined as:

$$egin{split} \mathcal{L}_{ ext{cross}} &= \ell\left(g(oldsymbol{x}_i^{(1)}),oldsymbol{t}_i^{(2)}
ight) + \ell\left(g(oldsymbol{x}_i^{(2)}),oldsymbol{t}_i^{(1)}
ight) \ \mathcal{L}_{ ext{reg}} &= -\mathbb{H}\left(rac{1}{|\mathcal{B}|}\sum_{oldsymbol{x}\in\mathcal{B}}g(oldsymbol{x})
ight) + rac{1}{|\mathcal{B}|}\sum_{oldsymbol{x}\in\mathcal{B}}\mathbb{H}\left(g(oldsymbol{x})
ight) \end{split}$$

where $\mathbb{H}(\cdot)$ is the entropy of predictions to avoid the predictions collapsing into a single class and encourage the model to have high confidence for predictions.

Learning Robust Representations

The contrastive loss and mixup augmentation are employed to learn robust representations. Contrastive loss:

$$\mathcal{L}_{\text{ctr}} = -\log \frac{\exp \left(f(\boldsymbol{x}^{(1)})^{\text{T}} f(\boldsymbol{x}^{(2)})/\tau\right)}{\sum_{\boldsymbol{x} \in \mathcal{S}} \exp \left(f(\boldsymbol{x}^{(1)})^{\text{T}} f(\boldsymbol{x})/\tau\right)}$$

Mixup augmentation:

$$\begin{cases} \boldsymbol{x}_i^{(m)} = \lambda \boldsymbol{x}_i + (1 - \lambda) \boldsymbol{x}_j, \\ \bar{\boldsymbol{t}}_i^{(m)} = \lambda \bar{\boldsymbol{t}}_i + (1 - \lambda) \bar{\boldsymbol{t}}_j, \end{cases}$$

$$\mathcal{L}_{ ext{align}} = \ell\left(g(oldsymbol{x}_i^{(ext{m})}), oldsymbol{ar{t}}_i^{(ext{m})}
ight) + \ell(p(oldsymbol{z} | oldsymbol{x}_i^{(ext{m})}), oldsymbol{ar{t}}_i^{(ext{m})}),$$

	CIFAR-10					CIFAR-100					
Noise type/rate	Sym.			Asym.	Avg.		Sym.			Avg.	
	20%	50%	80%	90%	40%		20%	50%	80%	90%	
Cross-Entropy	82.7	57.9	26.1	16.8	76.0	51.9	61.8	37.3	8.8	3.5	27.8
Mixup (17') [46]	92.3	77.6	46.7	43.9	77.7	67.6	66.0	46.6	17.6	8.1	34.6
P-correction (19') [43]	92.0	88.7	76.5	58.2	91.6	81.4	68.1	56.4	20.7	8.8	38.5
M-correction (19') [1]	93.8	91.9	86.6	68.7	87.4	85.7	73.4	65.4	47.6	20.5	51.7
ELR (20') [25]	93.8	92.6	88.0	63.3	85.3	84.6	74.5	70.2	45.2	20.5	52.6
DivideMix (20') [20]	<u>95.0</u>	93.7	<u>92.4</u>	74.2	91.4	89.3	74.8	72.1	57.6	29.2	58.4
MOIT (21') [29]	93.1	90.0	79.0	69.6	92.0	84.7	73.0	64.6	46.5	36.0	55.0
RRL (21') [21]	95.8	94.3	<u>92.4</u>	75.0	91.9	89.8	79.1	74.8	57.7	29.3	60.2
Sel-CL+ (22') [23]	<u>95.5</u>	<u>93.9</u>	89.2	<u>81.9</u>	93.4	<u>90.7</u>	76.5	72.4	<u>59.6</u>	<u>48.8</u>	<u>64.3</u>
TCL (ours)	95.0	93.9	92.5	89.4	92.6	92.7	<u>78.0</u>	73.3	65.0	54.5	67.7
	± 0.1	± 0.1	± 0.2	± 0.2	± 0.1		± 0.2	± 0.2	± 0.3	± 0.5	

Results on CIFAR

	Web	Vision	ILSVRC12			
	top1	top5	top1	top5		
Forward [30]	61.1	82.6	57.3	82.3		
D2L [26]	62.6	84.0	57.8	81.3		
Iterative-CV [2]	65.2	85.3	61.6	84.9		
Decoupling [27]	62.5	84.7	58.2	82.2		
MentorNet [16]	63.0	81.4	57.8	79.9		
Co-teaching [11]	63.5	85.2	61.4	84.7		
ELR [25]	76.2	91.2	68.7	87.8		
DivideMix [20]	77.3	91.6	75.2	90.8		
RRL [21]	76.3	91.5	73.3	91.2		
NGC [22]	79.1	91.8	74.4	91.0		
MOIT [29]	77.9	91.9	73.8	91.7		
TCL (ours)	79.1	92.3	75.4	92.4		

Table 4. Results on WebVision (mini).

Results on Real-world Datasets

Method	Acc (%)
Cross-Entropy	69.2
Label Correction [1]	71.0
Joint-Opt [34]	72.2
ELR [25]	72.8
SL [37]	74.4
DivideMix [20]	74.4
MentorMix [15]	74.3
RRL [21]	74.8
TCL (ours)	74.8

Table 5. Results on Clothing1M.

Datas	set		CIF	AR-10	C	CIFAR-100			
		Sym.		Asym.	Avg.	Sym.		Avg.	
Noise type/rate		50%	90%	40%		50%	90%		
(i)	Baseline	70.0	20.6	77.5	56.1	47.3	6.8	27.1	
(ii)	Loss [1, 20]	92.5	75.9	73.2	80.6	71.2	16.0	43.6	
	<i>k</i> -NN [29]	92.9	79.7	91.3	88.0	70.3	39.8	55.1	
	OOD (ours)	93.1	82.1	92.0	89.1	70.7	45.9	58.3	
(iii)	Ensem. [25]	91.3	72.7	89.8	84.6	68.2	36.9	52.6	
	$\mathcal{L}_{\mathrm{cross}}$ (ours)	93.9	89.4	92.6	92.0	73.3	54.5	63.9	
(iv)	w/o $\mathcal{L}_{\mathrm{reg}}$	92.0	34.5	90.3	72.3	68.5	24.3	46.4	
(v)	w/o \mathcal{L}_{align}	91.8	84.6	89.7	88.7	69.4	48.4	58.9	
(vi)	MoCo	94.4	90.7	93.1	92.7	74.0	57.3	65.6	

Table 3. Ablation results of different components in TCL.

Ablation Study

Figure 2. Qualitative results. For the model trained on CIFAR-10 with 90% sym. noise at 200th epoch, we show t-SNE visualizations for the learned representations of (a) testing set where different color denotes different class predicted by $g(\cdot)$ and (b) 10K samples from training set colored by the true labels; the gray '+' denotes the samples with noisy labels. (c) The histogram of p(y = z | x) for full training set colored by the clean and noisy labels. (d) The validation accuracy across training of CIFAR-10 and CIFAR-100 on 90% sym. noise.

Visualization

Thank You!

On behalf of all my co-authors

