

Paper Tag: THU-AM-347

Partial Network Cloning

Jingwen Ye, Songhua Liu, Xinchao Wang National University of Singapore

Quick Review

[Goal] Build a new network by connecting instead of creating.

Two Steps $\mathcal{M}_{f}^{\rho} \leftarrow Local(\mathcal{M}_{s}^{\rho}, M^{\rho}),$ $\mathcal{M}_{c} \leftarrow Clone(\mathcal{M}_{t}, M, \mathcal{M}_{s}, R)$ $\mathcal{M}_{c} \leftarrow Insert^{P}_{\rho=0}(\mathcal{M}_{t}, \mathcal{M}^{\rho}_{f}, R^{\rho})$ Hyper Network $\mathcal{M}_{s}, \mathcal{M}_{t}$: Pretrained Networks M: Masking parameters P: Position parameters

JUNE 18-22, 2023

Quick Review

Step I: Localize with Pruning

To model the source \mathcal{M}_s in the \mathcal{D}_t neighborhood, and then use the local model set as the surrogate:

$$\mathcal{G} = \{g_i\}^{(N)} \approx \mathcal{M}_s | \mathcal{D}_t$$

JUNE 18-22, 2023

Quick Review

Step II: Insert with adaptation

The learning-to-insert process with *R* is simplified as finding the best position:

$$\mathcal{M}_{c}^{R} \leftarrow \mathcal{M}_{t}\left(\mathcal{W}_{t}^{[0:R]}\right) \circ \left\{\mathcal{M}_{t'}\left(\mathcal{W}_{t}^{[R:L]}\right)\mathcal{M}_{f}\right\}$$

 $\min_{\mathcal{F}_{c},\mathcal{A}} \mathcal{L}_{kd} \circ f_{t} \Big[\mathcal{F}_{c} \Big(\mathcal{A}; \mathcal{M}_{c}^{R}(B \cdot x) \Big), \\
\mathcal{G}(B) \Big] + \mathcal{L}_{kd} \circ \overline{f_{t}} \Big[\mathcal{F}_{c} \Big(\mathcal{A}; \mathcal{M}_{c}^{R}(B \cdot x) \Big), \mathcal{M}_{t}(B \cdot x) \Big]$

 $R\colon (L-1)\to 0$

Background

JUNE 18-22, 2023

Main Idea

Three steps to build a hyper network:

Step I: Determine target network \mathcal{M}_t ; **Step II**: Clone from the source networks \mathcal{M}_s ; **Step III**: Finetune the prediction layers;

Main Idea

The key to PNC is to learn an optimal transferable module!

- **Transferablity:** The extracted transferable module should contain the explicit knowledge of the to-becloned task T_s , which could be transferred effectively to the downstream networks;
- **Locality:** The influence on the cloned model \mathcal{M}_c out of the target data D_t should be minimized;
- **Efficiency:** Functional cloning should be efficient in terms of runtime and memory;
- **Sustainability:** The process of cloning wouldn't do harm to the model zoo, meaning that no modification the pre-trained models are allowed and the cloned model could be fully recovered.

Main Idea

- Localize with pruning $\mathcal{M}_{f}^{\rho} \leftarrow Local(\mathcal{M}_{s}^{\rho}, M^{\rho})$
- Insert with adaptation $\mathcal{M}_c \leftarrow Insert^P_{\rho=0}(\mathcal{M}_t, \mathcal{M}^{\rho}_f, R^{\rho})$

Method

► Localize with pruning: $\mathcal{M}_{f}^{\rho} \leftarrow Local(\mathcal{M}_{s}^{\rho}, M^{\rho})$

• The localization can be denoted as:

 $\mathcal{M}_f \leftarrow M \cdot \mathcal{M}_s \Leftrightarrow \{m^l \big| \cdot w_s^l \ 0 \le l < L\}$

• We use the local model set as the surrogate:

 $\mathcal{G} = \{g_i\}^{(N)} \approx \mathcal{M}_s | \mathcal{D}_t$

• The localization process could be optimized as:

 $\min_{M} \sum_{g_i \in \mathcal{G}} \sum_{b \in B} \|f_t[\mathcal{M}_s(M \cdot W_s; b \cdot x)] - f_t[g_i(b)]\|^2$

Method

> Insert with adaptation: $\mathcal{M}_c \leftarrow Insert^P_{\rho=0}(\mathcal{M}_t, \mathcal{M}_f^{\rho}, R^{\rho})$

• The process is simplified as finding the best position to insert the transferable module:

$$\mathcal{M}_{c}^{R} \leftarrow \mathcal{M}_{t} \left(W_{t}^{[0:R]} \right) \circ \left\{ \mathcal{M}_{t'} \left(W_{t}^{[R:L]} \right) \mathcal{M}_{f} \right\}$$
$$\underset{\mathcal{F}_{c},\mathcal{A}}{\min \mathcal{L}_{kd}} \circ f_{t} \Big[\mathcal{F}_{c} \big(\mathcal{A}; \mathcal{M}_{c}^{R}(B \cdot x) \big),$$
$$\mathcal{G}(B) \Big] + \mathcal{L}_{kd} \circ \overline{f_{t}} \Big[\mathcal{F}_{c} \big(\mathcal{A}; \mathcal{M}_{c}^{R}(B \cdot x) \big), \mathcal{M}_{t}(B \cdot x) \Big]$$
$$R: (L-1) \rightarrow 0$$

✓ While training, R is firstly set to be L−1 and then moving layer by layer to R = 0;
✓ In each moving step, we finetune the ada rand the corresponding fully connected layers.

Cloning in various usages

[Scenario I] Partial network cloning is a better form for information transmission.

When there is a request for transferring the networks, it is better to transfer the cloned network obtained by PNC as **to reduce latency and transmission loss**.

[Scenario II] Partial network cloning enables model zoo online usage.

In some resource limited situation, the users could **flexibly utilize model zoo online** without downloading it on local.

Experiments

	Acc on MNIST (LeNet5, #3 Steps)						Acc on CIFAR-10 (ResNet-18, #5 Steps)					
Method	OriS	TarS	AvgS	OriM	TarM	AvgM	OriS	TarS	AvgS	OriM	TarM	AvgM
Pre-trained	99.7	99.5	99.7	99.7	99.5	99.6	95.9	97.2	96.1	95.9	97.6	96.5
Joint+Full Set	99.8	98.3	99.6	99.7	99.3	99.5	95.2	96.8	95.5	94.4	95.1	94.7
Continual	83.4-10.1	100.0+17.3	86.2-5.5	65.1-27.9	98.8+16.8	77.7-11.2	67.7+2.8	97.2 +2.6	75.3-14.8	92.8+18.7	78.2+16.6	87.3-2.1
Direct Ensemble	94.6+1.1	56.1-26.4	88.2-3.5	94.6+1.6	81.9 <mark>-0.1</mark>	89.8+0.9	90.5+25.6	39.3-55.3	82.0+12.1	90.5 +16. 4	43.8-17.8	73.0 + 3.6
Continual+KD	93.5	82.7	91.7	<u>93.0</u>	82.0	<u>88.9</u>	64.9	94.6	69.9	74.1	61.6	69.4
PNC-F (w/o Local)	87.7-5.8	100.0+17.3	90.0-1.7	90.9-2.1	98.2+16.2	93.6+4.7	88.6+23.7	97.3 +2.7	90.1+20.2	85.5+11.4	95.8+34.2	89.4+20.0
PNC-F (w/o Insert)	86.9- <mark>6.6</mark>	100.0 + 17.3	89.1-2.6	90.4-2.6	97.7+15.7	93.1+4.2	86.1+21.2	96.8+2.2	87.9+18.0	86.0+11.9	96.2 +34.6	89.8+30.4
PNC-F (full)	88.5- <u>5.0</u>	99.7 +17.0	90.4- <mark>2.6</mark>	91.1-1.9	98.8+16.8	94.0+5.1	83.0+18.1	96.5 + 1.9	85.3+15.4	85.4+11.3	95.5 +33.9	89.2+19.8
PNC (w/o Local)	93.6+0.1	96.2+13.5	94.0+2.3	92.9-0.1	94.0+12.0	93.3+4.4	90.5+25.6	93.9- <mark>0.7</mark>	91.7+21.8	87.1+13.0	94.6+33.1	89.9+29.8
PNC (w/o Insert)	92.8-0.7	99.5+16.8	93.9+2.2	91.9-1.1	97.3+15.3	93.9+ 5 .0	89.5+24.6	94.4- <u>0.2</u>	90.3+20.4	89.2+15.1	94.7+33.2	91.3+21.9
PNC (Ours, full)	96.4 +2.9	99.7 +17.0	97.0 +5.3	96.2 +3.2	97.815.8	96.8 +7.9	94.9 +30.0	95.5 +0. 9	95.0 +25.1	93.7+19.6	94.5+32.9	94.0 +24.6
	Acc on CIFAR-100 (ResNet-50, #5 Steps)						Acc on Tiny-ImageNet (ResNet-18, #5 Steps)					
Method	OriS	TarS	AvgS	OriM	TarM	AvgM	OriS	TarS	AvgS	OriM	TarM	AvgM
Pre-trained	80.0	80.3	80.1	80.0	77.2	79.0	71.3	67.6	70.7	71.3	68.9	70.4
Joint+Full Set	78.0	74.9	77.5	76.3	77.9	76.9	63.1	60.8	62.7	63.7	61.6	62.9
Direct Ensemble	59.3- <u>6.2</u>	46.4-26.3	57.2 <mark>-9.6</mark>	56.0-18.4	46.4-26.6	52.4-21.5	58.0 +0.8	35.9-20.5	54.3-2.8	50.6-9.3	30.2-27.9	43.0-16.3
Continual	52.3-13.2	79.4 +6.7	56.8- <u>9.9</u>	58.8-15.6	78.0 +5.0	66.0- 7.9	54.6-2.6	70.1 +13.7	57.2+0.1	55.9-4.0	64.9+6.8	59.3+0.1
Continual + KD	65.5	72.7	66.7	74.4	73.0	73.9	57.2	56.4	57.1	59.9	58.1	59.2
PNC (w/o Local)	72.2+6.7	70.4-2.3	71.9+5.2	75.7+1.3	68.3-4.7	72.9-1.0	65.6 +8.4	52.5-3.9	63.4 +6.4	56.4-3.5	55.9-2.2	56.2-3.0
PNC (w/o Insert)	63.2- <u>2.</u> 3	76.1+3.4	65.4-1.3	66.1- <u>8.</u> 3	76.0 +3. 0	69.8-4.1	60.7+3.5	63.5+7.1	61.2+4.1	58.8- <u>1.1</u>	60.9 + 2.8	59.6 +0.4
PNC (Ours, full)	76.7 +11.2	74.9+2.2	76.4 +9.7	76.9 +2.5	76.5+3.5	76.8 +2.9	63.2+6.0	60.7+4.3	62.8+5.7	63.5 +3.6	60.4+2.3	62.3 +3.1

Overall performance on partial network cloning on MNIST, CIFAR10, CIFAR100 and Tiny-ImageNet datasets

The similarity matrix maps.

#The performance with different scales

Thanks for Watching !

Presenter: Jingwen Ye

Feel free to contact me: *jingweny@nus.edu.sg*

