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Overview:



Create a detection dataset

Previous object detection method pipeline:

Training on the dataset
Inference on the dataset

Define the working environment we want

Define the categories we want to detect (vocabulary)

Collect images and annotate object instances

ex: common object detection (COCO, Objects365)
traffic detection (Cityscapes, Mapillary Vistas)
UAV (Visdrone)

Training on the dataset

Inference on the dataset



focusing on a single dataset

What if we need to detect in a new scene ?  (new environment or new categories)

The limitation:

We need to
collect new images
annotate again Create a new dataset



a universal object detector that can detect everything in every scene

once trained, can directly work in unknown situations 
without any further re-training

What we want:



1. Utilizing images of multiple sources and heterogeneous label spaces for training

Two abilities that a universal object detector should have:

a universal object detector that can detect everything in every scene

involving diversified types of images as many as possible

Datasets Categories Images

PASCAL VOC 20 11k

Cityscapes 8 5k

MS COCO 80 123k

Objects365 365 638k

LVIS 1230 68k

ImageNet 3130 1.2M

OpenImages 600 1.7M

VisualGenome 80138 108k

Problem:
Limited by human annotators:
1) Large vocabulary datasets are noisy and ambiguous
2) Specialized datasets



2. Generalizing to the open world well

Two abilities that a universal object detector should have:

Problem:
1)  we can never predict what we want in advance
2)  we can never annotate all categories (especially fine-grained)

Generalizing to the open world, especially for novel classes



Working pipeline:



Image-text aligned pre-training

A woman with a slight smile is 
picking fruits in the fruitful orchard. An aeroplane files across the sky

In a sunny day.

key:
image-text pairs are easy to collect (from social media)
large-scale training: see images as many as possible
align vision space and language space

CLIP, ALIGN, LiT, RegionCLIP, GLIP… 



Heterogeneous label space training

Possible structures:



Heterogeneous label space training

Decoupling proposal generation and RoI classification:

proposal generation (RPN): class-agnostic classification
better generalize to novel classes in the open world

RoI classification: class-specific classification
cannot be generalize to the open world well

Class-agnostic localization network for proposal generation:



Open-world inference

Problem: the network is strongly biased to base classes.

Probability calibration: balance the probability prediction
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Training datasets: subsets of COCO (80 categories), Objects365 (365 categories), 
OpenImages (500 categories) 

Testing datasets: LVIS v0.5 (1230 categories), v1 (1203 categories), 
ImageNetBoxes (3602 categories), VisualGenome (7605 categories)

Experiments: open-world detection



Training and testing on the COCO dataset:

Experiments: closed-world detection



Inference on 13 ODinW datasets

Experiments: object detection in the wild



Thanks


