

BASIS : **Batch-Aligned** Spectral-Embedding Space

Or Streicher, Ido Cohen, Guy Gilboa

CVPR Tag: WED-AM-207

Introduction

Spectral Space

- Initialization:
 - Define an anchor set

• Initialization:

- Define an anchor set
- Define the reference embedding space

 $\mathcal{O}^{a,ref}$ V^{a}

• Initialization:

- Define an anchor set
- Define the reference embedding space
- Training loop:
 - Calculate the embedding space over a new batch

Initialization:

- Define an anchor set
- Define the reference embedding space

Training loop:

- Calculate the embedding space over a new batch
- Calculate the alignment transformation

 $\mathcal{O}^{a,ref}$

 O^{a}

$$\min_{T} \sum_{i=1}^{l} \left\| \varphi_{i}^{a,ref} - T \hat{\varphi}_{i}^{a} \right\|^{2}$$

 $\hat{\varphi} = [\varphi, 1] \qquad T \in \mathbb{R}^{K imes (K+1)}$

• Initialization:

- Define an anchor set
- Define the reference embedding space
- Training loop:
 - Calculate the embedding space over a new batch
 - Calculate the alignment transformation
 - Batch Alignment

 $T\hat{\phi}$

Initialization:

- Define an anchor set
- Define the reference embedding space
- Training loop:
 - Calculate the embedding space over a new batch
 - Calculate the alignment transformation
 - Batch Alignment
 - Gradient Step

 $L_{BASiS}(\theta) = \frac{1}{m^2} \sum_{i=1}^{m} \left\| y_i - \varphi_i \right\|^2$

Initialization:

- Define an anchor set
- Define the reference embedding space
- Training loop:
 - Calculate the embedding space over a new batch
 - Calculate the alignment transformation
 - Batch Alignment
 - Gradient Step

Toy Examples

Spectral Clustering

Measures	Networks	MNIST	Fashion-MNIST	SVHN	CIFAR-10
	Diffusion-Net	0.204 ± 0.058	0.488 ± 0.238	1.909 ± 0.238	1.022 ± 0.250
$d_G\downarrow$	SpecNet1	0.386 ± 0.074	0.375 ± 0.132	3.526 ± 0.529	2.256 ± 0.471
	SpecNet2	1.388 ± 0.262	1.976 ± 0.210	1.903 ± 0.242	2.970 ± 0.682
	BASiS (Ours)	0.107 ± 0.038	0.284 ± 0.073	1.656 ± 0.170	0.803 ± 0.085
	Diffusion-Net	0.535 ± 0.365	0.823 ± 0.664	1.532 ± 0.354	2.957 ± 1.837
$d_{\perp}\downarrow$	SpecNet1	6.296 ± 0.922	6.384 ± 0.899	4.507 ± 0.821	5.169 ± 0.775
	SpecNet2	9.486 ± 0.001	8.561 ± 1.397	4.104 ± 0.269	4.922 ± 0.102
	BASiS (Ours)	0.247 ± 0.076	0.590 ± 0.144	0.488 ± 0.098	0.407 ± 0.095
	Diffusion-Net	0.944 ± 0.041	0.759 ± 0.085	0.645 ± 0.016	0.466 ± 0.034
NMI↑	SpecNet1	0.911 ± 0.008	0.761 ± 0.011	0.665 ± 0.018	0.443 ± 0.012
	SpecNet2	0.925 ± 0.012	0.759 ± 0.010	0.701 ± 0.009	0.466 ± 0.013
	BASiS (Ours)	0.961 ± 0.001	0.798 ± 0.001	0.736 ± 0.001	$\textbf{0.501} \pm \textbf{0.001}$
	Diffusion-Net	0.944 ± 0.030	0.781 ± 0.179	0.687 ± 0.303	0.620 ± 0.062
ACC↑	SpecNet1	0.963 ± 0.005	0.815 ± 0.029	0.811 ± 0.039	0.637 ± 0.029
	SpecNet2	0.966 ± 0.007	0.801 ± 0.023	0.813 ± 0.015	0.606 ± 0.039
	BASiS (Ours)	0.986 ± 0.001	0.865 ± 0.003	0.880 ± 0.001	0.688 ± 0.001
	Diffusion-Net	95.508±1.449	86.207 ± 0.196	86.850 ± 1.386	67.316 ± 2.112
Accuracy(%)↑	SpecNet1	92.278 ± 4.776	84.123 ± 1.229	85.154 ± 0.377	65.336 ± 0.626
	SpecNet2	97.026 ± 0.546	85.953 ± 0.240	87.469 ± 0.130	67.093 ± 0.644
	BASiS (Ours)	98.522 ± 0.065	87.202 ± 0.187	88.021 ± 0.064	68.887 ± 0.128

Conclusions

✓ Scalability
✓ OOSE
✓ High-quality approximation of the eigenspace
✓ Invariance to the Laplacian definition
✓ BASiS building block

Thank you for listening!

Do you have any questions?

orr.shtr@gmail.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.