Linning Xu, Yuanbo Xiangli, Sida Peng, Xingang Pan, Nanxuan Zhao, Christian Theobalt, Bo Dai, Dahua Lin

(WED-AM-007)

Example View (GT)

Ours: photorealistic

NeRF-based (MLP-based): Blurry, no fine detail

- **Cause:** Capacity limitation
- Possible remedy: BlockNeRF, Mega-NeRF Geographically divide scenes and assign each region a different sub-NeRF to learn in parallel
- Drawback: Linear scaled number of sub-NeRFs

Grid-based: Noisy, lack of continuity, lack fine details

- Cause: independently optimized grid feature, limited grid resolution
 - Possible remedy: instant-NGP, TensoRF Increase grid resolution according to scene, use small MLP renderer to translate features
- Drawback: heavy on memory, MLP learning ability

(a) Two Stage Training Scheme

(b) Two Branch Model Design

Model view (extracted point cloud)

Demo Trajectory view

Target Scenario: Large-scale Urban Scenes

Oblique Photography

- Multi-resolution Feature Grid Pre-train
- Grid-guided Neural Radiance Field (NeRF-branch)
- Refined Grid Feature from NeRF (Grid-branch)

$\sigma', c' = F'(\mathcal{G}_{\sigma}(X), \mathcal{G}_{c}(X), \operatorname{PE}(X), \operatorname{PE}(d))$

(a) Two Stage Training Scheme

(b) Two Branch Model Design

<mark>Grid-guided</mark> Neural Radiance Fields for Large Urban Scenes

Grid-guided Neural Radiance Field (NeRF-branch)

- Grid density guide NeRF sampling: compress sampling space to surface
- Enrich PE with intermediate features of scene content (multi-res feature)

Refined Grid Feature from NeRF (Grid-branch)

- <u>Recall</u>: feature grid uses bilinear interpolation to infer features of points in a voxel, not enough incentive from merely pixel-wise MSE loss NeRF to enhance supervision signal with point-wise guidance
- <u>Recall</u>: grid features are independently optimized, lack of spatial continuity & semantic similarity -> noisy visual

NeRF provides global regularization

Design Efficacy:

<u>Refined grid feature</u>: less noisy, sharper edges, and regular shapes of objects; appearance feature can capture shadows

(a) Density feature plane (pre-trained -> refined)

(b) Appearance feature plane (pre-trained -> refined)

Design Efficacy:

<u>Refined grid feature</u>: less noisy, sharper edges, and regular shapes of objects; appearance feature can capture shadows

Design Efficacy:

Grid feature enriched NeRF:

NeRF

w/ feat plane

w/ feat plane & w/ supervision from grid

<u>NeRF picks up fine details in voxel</u>

Grid method (res512)

(a) Grid-guided NeRF		Low freq band High freq	
			-25
			- 2.0
開発語の言語			-15
			-10
			- 0.5
		-	
X-axis embeds	Y-axis embeds	Z-axis embeds	
(b) vanilla NeRF		Low freq band High freq	0.5

Demo Novel Views

Two branch comparison

