

PeakConv: Learning Peak Receptive Field for Radar Semantic Segmentation (#4943 THU-AM-105)

LIWEN ZHANG*, XINYAN ZHANG*, YOUCHENG ZHANG, ET AL. JUN. 2023.

I.	II.	III.	VI.
BACKGROUND	MOTIVATION	METHODOLOGY	RESULTS
 Radar Semantic Segmentation (RSS) Radar Object Signature Constant False Alarm Rate Detection (CFAR) 	 Defeats of Existed RSS Methods Radar-specific Semantic Segmentation Method 	 Peak Receptive Field (PRF) Learning from PRF Vanilla-PKC ReDA-PKC PeakConv-based RSS Network 	 Guard Bandwidth Setting Convolution Mechanism SoTA Comparisons Conclusions

I.	II.	III.	VI.
BACKGROUND	MOTIVATION	METHODOLOGY	RESULTS
 Radar Semantic Segmentation (RSS) Radar Object Signature Constant False Alarm Rate Detection (CFAR) 	 Defeats of Existed RSS Methods Radar-specific Semantic Segmentation Method 	 Peak Receptive Field (PRF) Learning from PRF Vanilla-PKC ReDA-PKC PeakConv-based RSS Network 	 Guard Bandwidth Setting Convolution Mechanism SoTA Comparisons Conclusions

I. Background

Radar Semantic Segmentation (RSS)

- Remote sensor
- Robust to extreme weather, dim light condition and sun glare
- RSS can provide more refined and detailed information in radar scene understanding

Radar Object Signature

- Not as intuitively understood as the optical images
- Less intuitive priors of human vision
- Local peak frequence response

(c) Synchronized camera image

(b) RD-amplitude 3D representation

I. Background

■ Constant False Alarm Rate Detection (CFAR)

I.	II.	III.	VI.
BACKGROUND	MOTIVATION	METHODOLOGY	RESULTS
 Radar Semantic Segmentation (RSS) Radar Object Signature Constant False Alarm Rate Detection (CFAR) 	 Defeats of Existed RSS Methods Radar-specific Semantic Segmentation Method 	 Peak Receptive Field (PRF) Learning from PRF Vanilla-PKC ReDA-PKC PeakConv-based RSS Network 	 Guard Bandwidth Setting Convolution Mechanism SoTA Comparisons Conclusions

II. Motivation

Defects of Existed Radar object detection Methods

- Classic CFAR-based radar object detection methods:
 - Effects rely on manually fine-tune hyper-parameters
 - Lack of semantic information of objects
- Deep learning-based RSS methods:
- Mechanically apply methods which are designed for optical images specifically
- Inefficient learning on radar signal

Local peak frequency response for the objects of interest

Radar-specific Semantic Segmentation Method is necessary!

I.	II.	III.	VI.
BACKGROUND	MOTIVATION	METHODOLOGY	RESULTS
 Radar Semantic Segmentation (RSS) Radar Object Signature Constant False Alarm Rate Detection (CFAR) 	 Defeats of Existed RSS Methods Radar-specific Semantic Segmentation Method 	 Peak Receptive Field (PRF) Learning from PRF Vanilla-PKC ReDA-PKC PeakConv-based RSS Network 	 Guard Bandwidth Setting Convolution Mechanism SoTA Comparisons Conclusions

III. Methodology

Peak Receptive Field (PRF):

$$\mathcal{R} = \left\{ x_c, \{x_r^{(i)}\}_{i=1}^{N_r} \right\}, \tag{1}$$

s.t. $|\boldsymbol{b}_G| < \left| \boldsymbol{p}_r^{(i)} - \boldsymbol{p}_c \right| \le |\boldsymbol{b}_R + \boldsymbol{b}_G|$

Fig.1 Guard/reference bandwidths and PRF

Learning from PRF

Vanilla-PKC: $PKC(\mathcal{R}; W) \in \mathbb{R}^{C} in^{\times N_r \times C} out: \mathbb{R}^{C} in \to \mathbb{R}^{C} out$

$$PKC(\mathcal{R}; W) = x_c - Vec\left(\left\{\sum_{i=1}^{N_r} w_j^{(i)} * x_r^{(i)}\right\}_{j=1}^{C} \text{out}\right),$$
(2)

$$w_j^{(i)} \in \mathbb{R}^{C_{\text{in}}}(j = 1, \dots, C_{\text{out}}) \& C_{\text{in}} = C_{\text{out}}.$$

Fig.2 The the whole process for a PeakConv layer

ReDA-PKC: $PKC^*(\mathcal{R}; W) \in \mathbb{R}^{C} \text{in}^{\times N_r \times C} \text{out}: \mathbb{R}^{C} \text{in} \to \mathbb{R}^{C} \text{out}$

Fig.3 The the whole process for a ReDA-PKC layer

III. Methodology

PeakConv-based RSS Network: PKCIn-Net & PKCOn-Net

I. BACKGROUND	II. MOTIVATION	III. METHODOLOGY	VI. EXPERIMENTS & RESULTS
 Radar Semantic Segmentation (RSS) Radar Object Signature Constant False Alarm Rate Detection (CFAR) 	 Defeats of Existed RSS Methods Radar-specific Semantic Segmentation Method 	 Peak Receptive Field (PRF) Learning from PRF Vanilla-PKC ReDA-PKC PeakConv-based RSS Network 	 Guard Bandwidth Setting Convolution Mechanism SoTA Comparisons Conclusions

IV. Experiments & Results

- PKCOn-Net + Vanilla PKC->PKCOn ullet
- PKCOn-Net + ReDA-PKC -> PKCOn* ٠
- PKCIn-Net + Vanilla PKC -> PKCIn ٠
- PKCIn-Net + ReDA-PKC -> PKCIn* ٠

ligent Science & Technology

Ablation Experiments & SoTA Comparison

Table 1. The effectiveness of guard bandwidths

Table 3. Comprehensive RSS performance comparison.

mDice 40.9%

38.2% 38.3% 37.8%

44.8% 30.5%

46.2% 47.7% 47.3% 52.9%

53.3%

Fuermenter	P	#Donoma	RD	View	RA	View	Fromoworks	#Params	RD View		RA View	
Frameworks	\mathbf{B}_{G}	#Params	mIoU	mDice	mIoU	mDice	Frameworks	@Frames	mIoU	mDice	mIoU	mD
	$\{0, 0, 0\}$	4.5M	57.2%	68.9%	36.9%	44.7%	FCN	134.3M@3	54.7%	66.3%	34.5%	40.
PKCOn	$\{1, 1, 1\}$	5.7M	<u>58.8%</u>	70.7%	39.0%	47.7%	7.7% U-Net		55.4%	68.0%	32.8%	38.
	$\{2, 2, 2\}$	6.9M	<u>58.8%</u>	<u>70.5%</u>	<u>39.8%</u>	<u>48.5%</u>	DeepLabv3+	59.3M@3	50.8%	61.6%	32.7%	38.
	$\{0, 0, 0\}$	4.5M	58.2%	69.7%	35.4%	42.5%	RSS-Net	10.1M@3	32.1%	36.9%	32.1%	37.
PKCOn*	$\{1, 1, 1\}$	5.7M	58.2%	70.1%	37.9%	46.3%	MVA-Net	4 8M@3	53 5%	65.3%	37.1%	44
	$\{2, 2, 2\}$	6.9M	59.1%	70.3%	40.2%	49.7%		106 4M@9	56.6%	68.5%	27.0%	30
	$\{0, 0, 0\}$	5.5M	58.7%	70.6%	40.4%	49.7%	TRADE No.	100.4M@9	56.0%	60.0%	27.970	50.
PKCIn	$\{1, 1, 1\}$	6.3M	60.0%	71.9%	42.5%	52.9%	52.9% TMVA-Net		56.1%	68.0%	31.1%	46.
	$\{2, 2, 2\}$	7.1M	60.3%	72.3%	42.7%	53.4%	PKCOn	5.7M@1	58.8%	70.7%	39.0%	47.
PKCIn*	{0, 0, 0}	5.5M	59.2%	71.0%	41.1%	50.9%	PKCOn*	5.7M@1	59.4%	71.2%	38.6%	47.
	$\{1, 1, 1\}$	6.3M	<u>60.7%</u>	72.5%	42.9%	<u>53.3%</u>	PKCIn	6.3M@5	<u>60.0%</u>	<u>71.9%</u>	<u>42.5%</u>	<u>52.</u>
	$\{2, 2, 2\}$	7.1M	61.1%	72.9%	43.3%	53.5%	PKCIn*	6.3M@5	60.7%	72.5%	42.9%	53.

*Please note that $B_G = \{b_G^{RD}, b_G^{AD}, b_G^{RA}\}$, where $b_G^{\chi} = b_G^{\chi}$ by default.

Table 2. Exploration of various convolutions.

Conv Type Conv		DefConv			DefConvV2				DilConv				PeakConv		PeakConv*						
Kernel Size		3×3		5×5		3×3		5×5		3 >	3×3		5×5 3		3×3		5×5		16		.6
Frame	vorks	SF	MF	SF	MF	SF	MF	SF	MF	SF	MF	SF	MF	SF	MF	SF	MF	SF MF		SF	MF
#Para	ams	4.7M	5.6M	7.1M	7.2M	4.9M	5.7M	8.1M	8.2M	4.9M	5.8M	8.5M	8.6M	4.7M	5.6M	7.1M	7.2M	5.7M	6.3M	5.7M	6.3M
PD View	mIoU	54.0%	56.1%	55.6%	57.4%	55.5%	58.0%	55.8%	58.3%	55.4%	58.8%	56.1%	59.1%	57.1%	58.4%	57.9%	59.9%	58.8%	<u>60.0%</u>	59.4%	60.7%
KD view	mDice	65.3%	68.0%	67.1%	69.2%	67.3%	69.8%	68.0%	70.2%	67.0%	70.6%	68.2%	70.8%	69.1%	70.4%	69.8%	71.9%	<u>70.7%</u>	<u>71.9%</u>	71.2%	72.5%
RA View	mIoU	36.4%	37.7%	36.4%	37.7%	38.2%	39.1%	38.4%	39.2%	38.3%	39.3%	38.6%	39.3%	37.4%	39.1%	37.7%	39.7%	39.0%	42.5%	38.6%	42.9%
	mDice	43.9%	46.2%	44.0%	46.4%	47.2%	48.1%	47.6%	48.2%	47.3%	48.6%	47.8%	48.6%	45.6%	48.1%	46.2%	49.3%	<u>47.7%</u>	<u>52.9%</u>	47.3%	53.3%

*SF denotes network with single-frame input, which has the same structure with PKCOn-Net; MF denotes network

with multi-frames input, which has the same structure with PKCIn-Net. Dilation step = 2 for all DilConvs.

Conclusions

In this paper, we propose a **novel convolution operation**, **PeakConv**, to highlight object signature from interference such as clutters/noises. PeakConv is **designed specifically for radar data-related learning tasks**. According to the role of center unit in interference estimation, there are two kinds of implements for PeakConv, vanilla- and ReDA-PKC. Comparing with existing RSS models, PeakConv-based networks achieve an outstanding trade-off between performance and complexity, in which PKCIn-Net achieves **SoTA RSS performance** and PKCOn-Net becomes suboptimal one without additional temporal clues, i.e., with single-frame input. It is obvious that the ability of PKCon-Net to capture peak response would be further improved by introducing temporal information. Besides, **in-depth optimization of PeakConv through auto-adaptive guard bandwidth is also one of our future research priorities**.

PeakConv: Learning Peak Receptive Field for Radar Semantic Segmentation

LIWEN ZHANG*, XINYAN ZHANG*, YOUCHENG ZHANG, ET AL. JUN. 2023.

Question and cooperation please connect with <u>lwzhang9161@126.com</u> PeakConv Project: <u>https://github.com/zlw9161/PKC</u> CARRADA-RAC Project: <u>https://github.com/zlw9161/CARRADA-RAC</u>

