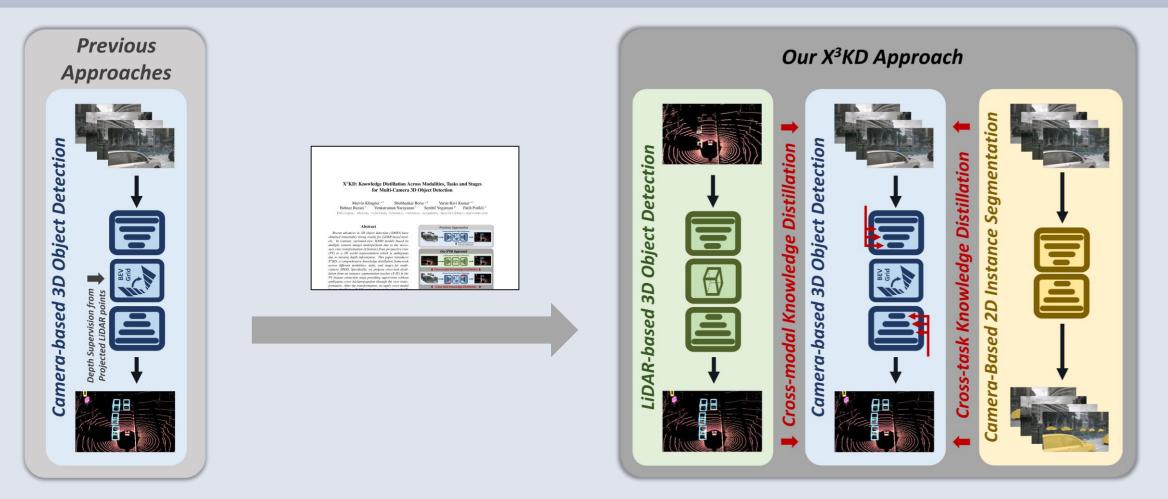
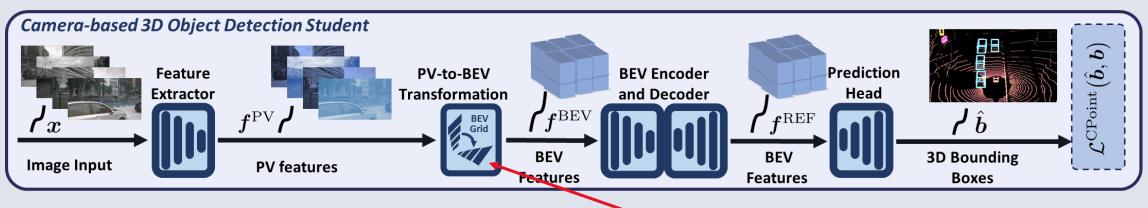
Qualcom

X³KD: Knowledge Distillation Across Modalities, Tasks and Stages for Multi-Camera 3D Object Detection

Marvin Klingner* Shubhankar Borse* Varun Ravi Kumar* Behnaz Rezaei Venkatraman Narayanan Senthil Yogamani Fatih Porikli


Motivation

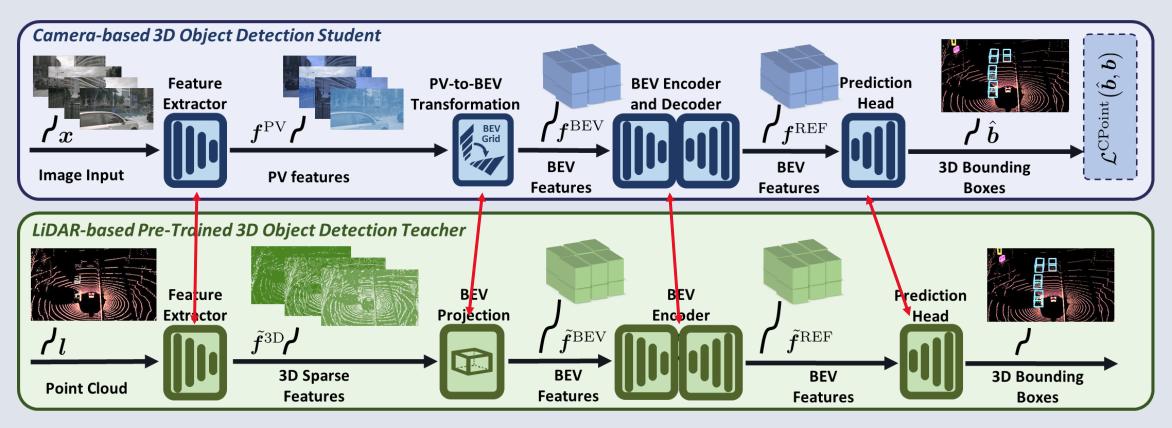
LiDAR-based 3D object detection outperform multi-camera 3D object detection methods Pretraining of the feature extraction on 2D instance segmentation improves 3D object detection



Main Contribution

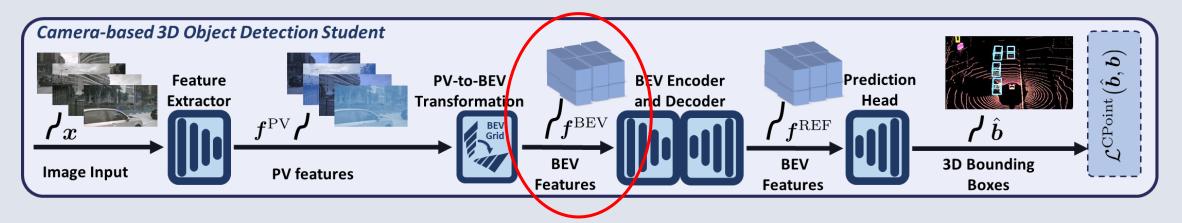
We improve multi-camera 3D object detection using knowledge distillation from LiDAR-based 3D object detection (3DOD) and instance segmentation teacher models

Baseline Method

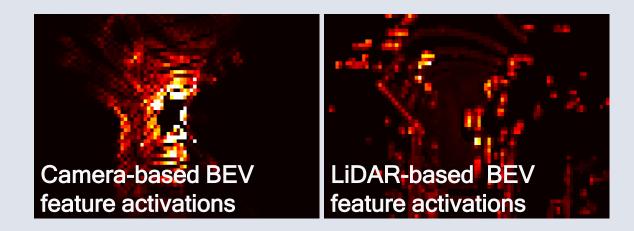

- Recent 3DOD approaches learn a bird's eye view (BEV) representation using depth to transform image features to bird's eye view
- Our baseline BEVDepth [1] uses projected LiDAR points to supervise the depth prediction used to transform the features
- In our work we aim at improving the way the LiDAR is used for supervision of the multicamera 3D object detection

 Depth supervision through LiDAR points

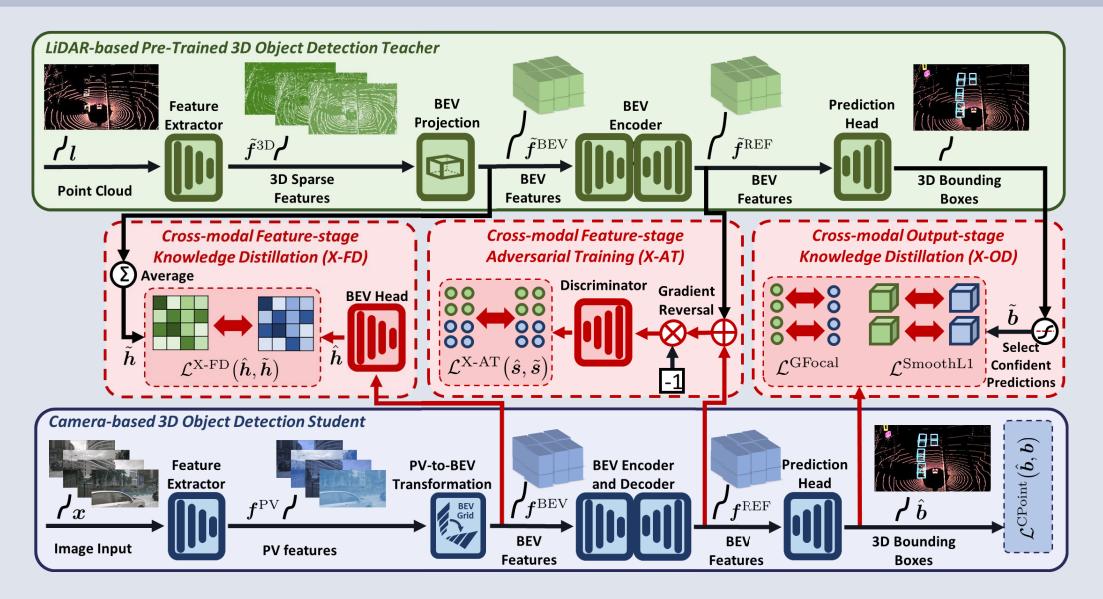
Model	$\mid LSS++$	DS	GFLOPS	mAP↑	$NDS\uparrow$
	× 1	×	298	32.4	44.9
	×	1	298	33.1	44.9
BEVDepth [†]		×	316	34.9	47.0
		 Image: A second s	316	35.9	47.2
X^3KD (Ours)	 ✓ 	 Image: A second s	316	39.0	50.5

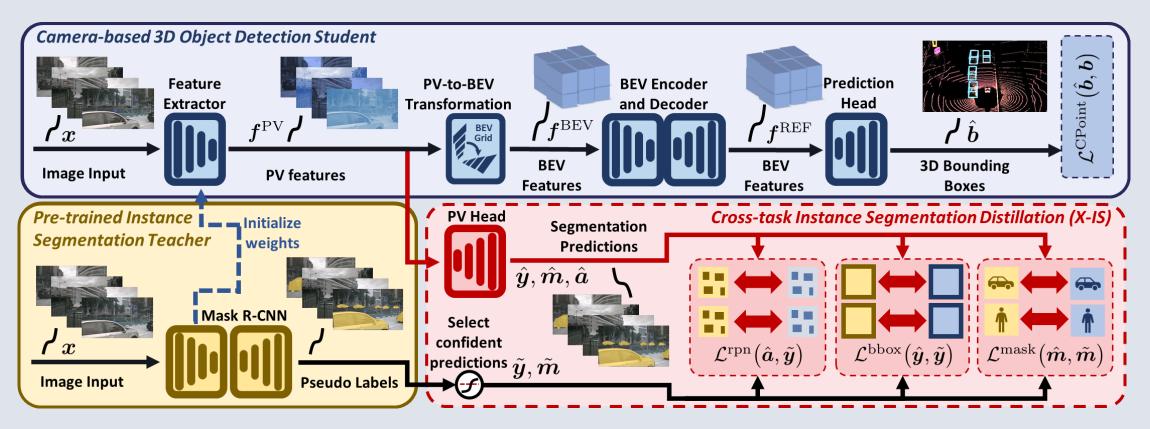

[1] Li et al., "BEVDepth: Acquisition of Reliable Depth for Multi-view 3D Object Detection," in Proc. of AAAI, 2023.

Multi-camera vs. LiDAR-based Models



- LiDAR-based 3D object detection clearly outperform multi-camera 3D object detection
- The architectural components of both models are very similar: feature extractor, view transformation, BEV network, prediction head


Transformation to Bird's Eye View


- The multi-camera 3DOD model has a strong focus on the center grid cells and is less precise due to the view transformation based on depth
- The LiDAR-based 3DOD model is able to learn a precise and spatially balanced feature representation in bird's eye view
- We use the learned feature representation of the LiDAR model to distill knowledge into the multi-camera model

X³KD Method: Cross-modal Distillation

X³KD Method: Cross-task Distillation

- Pretraining of the image feature extraction on instance segmentation improves the multicamera 3D object detection model's performance
- To retain the knowledge of the image feature extraction, we propose cross-task distillation from a pretrained instance segmentation model

State-of-the-art Comparison

Set	Model	Backbone	Resolution	mATE↓	$mASE\downarrow$	mAOE↓	$mAVE\downarrow$	mAAE↓	$mAP\uparrow$	<i>NDS</i> ↑
Validation	BEVDet [18] BEVDet4D [49] BEVDepth [28] BEVDepth [†] STS* [47] BEVStereo* [27]	ResNet-50	256×704	0.725 0.703 0.629 0.636 0.601 0.598	0.279 0.278 0.267 0.272 0.275 0.270	0.589 0.495 0.479 0.493 0.450 0.438	$\begin{array}{c} 0.860 \\ 0.354 \\ 0.428 \\ 0.499 \\ 0.446 \\ 0.367 \end{array}$	0.245 0.206 0.198 0.198 0.212 0.190	29.8 32.2 35.1 35.9 37.7 37.2	37.9 45.7 47.5 47.2 48.9 50.0
	$\mathbf{X}^{3}\mathbf{K}\mathbf{D}_{\mathrm{all}}$ F	ResNet-50	256×704	0.615	0.269	0.471	0.345	0.203	39.0	50.5
Validation	PETR [32] BEVDepth [†] BEVDepth [28] STS* [47]	ResNet-101	512×1408	0.710 0.579 0.565 0.525	0.270 0.265 0.266 0.262	0.490 0.387 0.358 0.380	0.885 0.364 0.331 0.369	0.224 0.194 0.190 0.204	35.7 40.9 41.2 43.1	42.1 53.1 53.5 54.2
	$X^3 KD_{all}$	ResNet-101	512×1408	0.552	0.257	0.338	0.328	0.199	44.8	55.3

- We compare our X³KD method against previous state-of-the-art methods on the nuScenes dataset in comparable settings, i.e., same backbone and input image resolution
- > We outperform all previous state-of-the-art methods
- > We significantly improve over our reimplementation of the baseline BEVDepth [1]

State-of-the-art Comparison

Set	Model	Backbone	Resolution	$mATE\downarrow$	$mASE\downarrow$	mAOE↓	$mAVE\downarrow$	$mAAE\downarrow$	$mAP\uparrow$	$NDS\uparrow$
	DETR3D [46]			0.716	0.268	0.379	0.842	0.200	34.9	43.4
tio	BEVFormer [30]	ResNet-101	900×1600	0.673	0.274	0.372	0.394	0.198	41.6	51.7
ida	PolarFormer [21]			0.648	0.270	0.348	0.409	0.201	43.2	52.8
Validation	BEVDepth [†]	ResNet-101	640×1600	0.571	0.260	0.379	0.374	0.196	42.8	53.6
	$X^3 KD_{all}$	ResNet-101	640×1600	0.539	0.255	0.320	0.324	0.196	46.1	56.7
	BEVFormer [30]			0.631	0.257	0.405	0.435	0.143	44.5	53.5
Test	$\operatorname{BEVDepth}^{\dagger}$	ResNet-101	640×1600	0.533	0.254	0.443	0.404	0.129	43.1	53.9
Τ	PolarFormer [21]			0.610	0.258	0.391	0.458	0.129	45.6	54.3
	$X^3 KD_{all}$	ResNet-101	640×1600	0.506	0.253	0.414	0.366	0.131	45.6	56.1

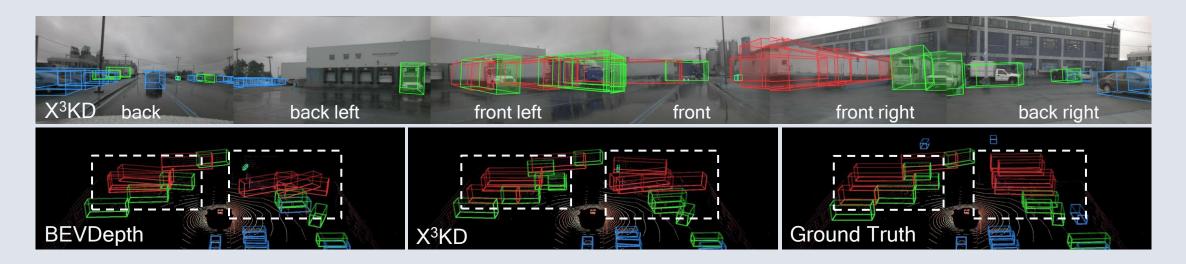
- We compare our X³KD method against previous state-of-the-art methods on the nuScenes dataset in comparable settings, i.e., same backbone and input image resolution
- > We outperform all previous state-of-the-art methods
- > We significantly improve over our reimplementation of the baseline BEVDepth [1]
- > We show the efficacy of our method at various input image resolutions
- We also submit our method's results to the nuScenes benchmark server to evaluate on the non-public test set, where we also outperform previous results

Ablation Studies

Model	X-OD	X-FD	X-AT	X-IS	mATE↓	$mASE\downarrow$	mAOE↓	$mAVE\downarrow$	$mAAE\downarrow$	mAP↑	$NDS\uparrow$
BEVDepth [†]	×	×	×	×	0.636	0.272	0.493	0.499	0.198	35.9	47.2
X-OD	1	×	X	×	0.642	0.278	0.456	0.338	0.188	35.7	48.7
X-FD	×	\checkmark	×	×	0.644	0.276	0.479	0.361	0.200	36.1	48.5
X-AT	×	×	✓	×	0.648	0.277	0.492	0.354	0.192	35.5	48.1
$\mathbf{X}^3 \mathbf{K} \mathbf{D}_{ ext{modal}}$	1	\checkmark	✓	X	0.632	0.271	0.456	0.342	0.203	36.8	49.4
X-IS	×	×	X	1	0.635	0.273	0.462	0.350	0.204	38.7	<u>50.1</u>
$\mathbf{X}^3 \mathbf{K} \mathbf{D}_{all}$	1	 Image: A second s	\checkmark	1	0.615	0.269	0.471	0.345	0.203	39.0	50.5
LiDAR Teacher	NA	NA	NA	NA	0.301	0.257	0.298	0.256	0.195	59.0	66.4

> We show the effectiveness of our single contributions by an ablation study

> Each method component individually improves the 3DOD model's performance


Ablation Studies

Model	Student Backbone	Teacher Backbone	Pre.	Dist.	<i>mAP</i> ↑	NDS↑
BEVDepth [†]	ResNet-50	NA	X	×	35.9	47.2
	ResNet-50	ResNet-50	×	1	36.4	48.8
	ResNet-50	NA	 ✓ 	×	37.7	49.5
X-IS	ResNet-50	ResNet-50	1	1	38.7	50.1
X-IS	ResNet-50	ConvNeXt-T	1	✓	38.5	49.9

Model	Dist.	Weight	w/o GT	$mAOE\downarrow$	$mAVE\downarrow$	mAP↑	<i>NDS</i> ↑
BEVDepth [†]	X	×	×	0.493	0.499	35.9	47.2
		×	×	0.477	0.342	35.6	48.5
X-OD	 Image: A set of the set of the	√	×	0.456	0.338	35.7	48.7
	 ✓ 	×	1	1.090	0.972	36.1	35.3
X-OD _{w/o GT}	 Image: A set of the set of the	1	√	0.724	0.570	36.5	43.7

- > We also provide ablations on different variants of our method components
- For cross-task distillation (X-IS), we show the effect of instance segmentation pretraining (Pre.) and distillation during 3DOD training (Dist.)
- > We also show that student and teacher backbones do not have to be identical
- For cross-modal output-level distillation (X-OD), we show the effect of confidence-based weighting (Weight) and not using 3DOD labels but only pseudo labels from the LiDARbased teacher (w/o GT)

Qualitative Results

- > We also provide a qualitative analysis of our X³KD method
- We observe improved classification and detection performance of X³KD compared to the baseline BEVDepth [1]

[1] Li et al., "BEVDepth: Acquisition of Reliable Depth for Multi-view 3D Object Detection," in Proc. of AAAI, 2023.

- We introduce a cross-modal knowledge distillation from a LiDAR-based 3DOD model to a multi-camera 3DOD model
- We propose cross-task knowledge distillation from a pretrained instance segmentation model to the feature extraction of a multi-camera 3DOD model
- We provide a detailed ablation study on the effectiveness of our single contributions
- We outperform previous state-of-the-art approaches at no additional complexity during inference

Qualcom

Thankyou