

DejaVu: Conditional Regenerative Learning to Enhance Dense Prediction

THU-AM-284

Qualcomm AI Research

Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

Shubhankar Borse Senior Engineer

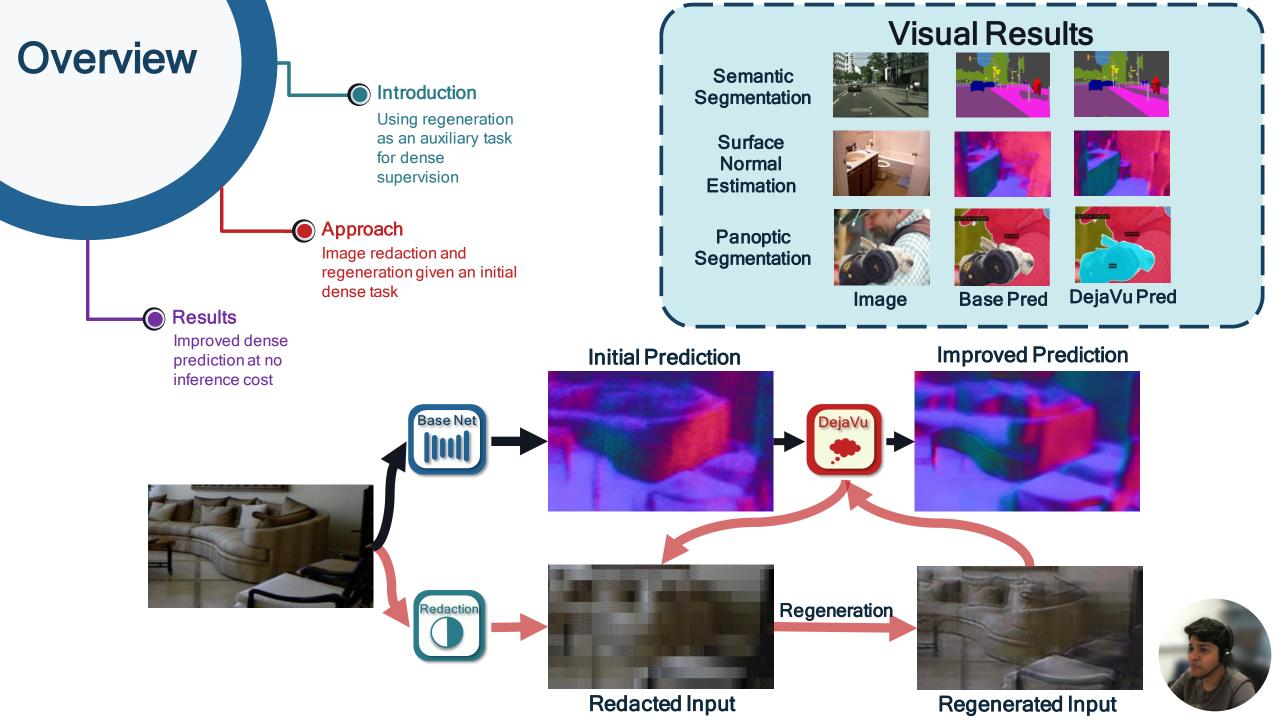
Hyojin Park Senior Engineer

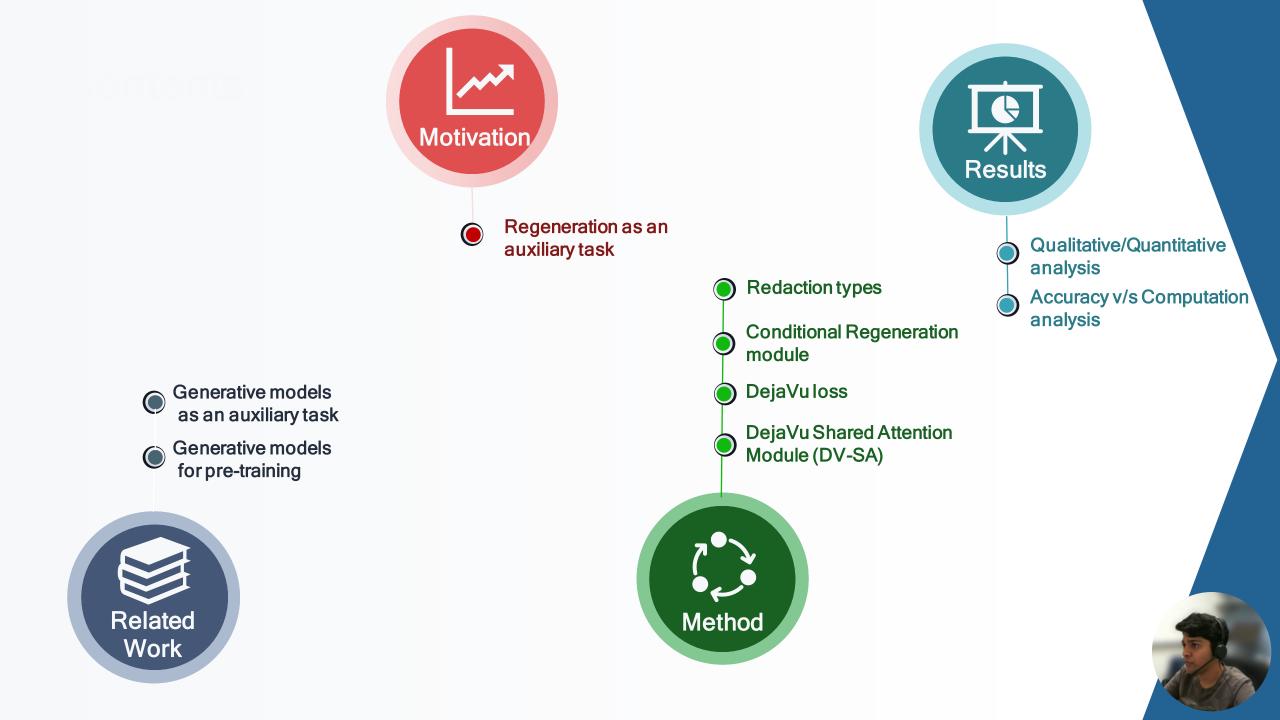
Debasmit Das Staff Engineer

Risheek Garrepalli Senior Engineer

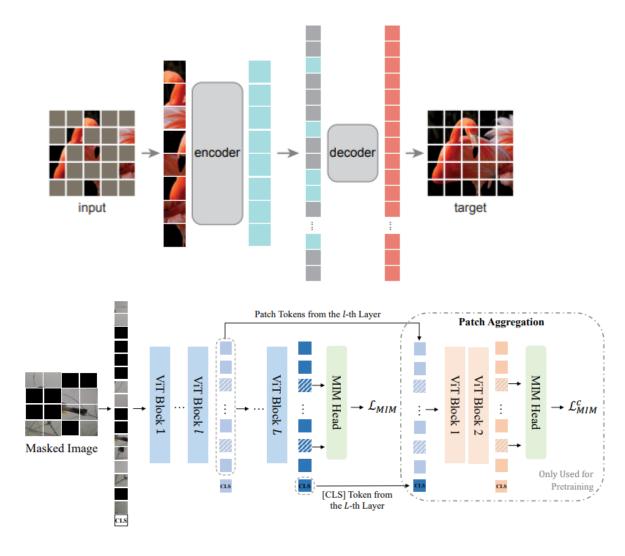
Hong (Herbert) Cai Staff Engineer

Fatih Porikli Senior Dir, Technology





Related Work



Sources:

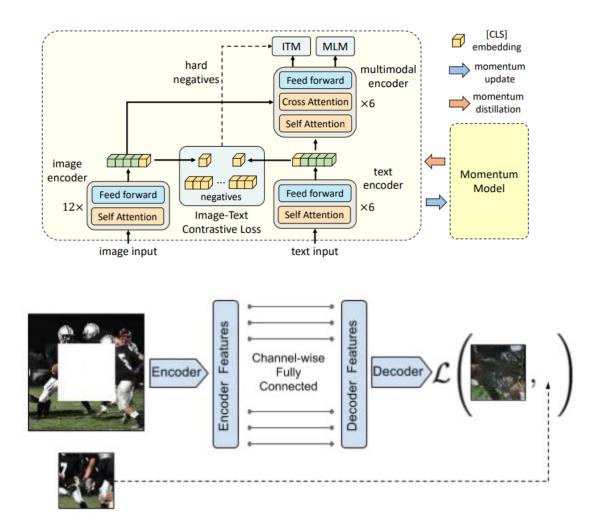
• He, Kaiming, et al. "Masked autoencoders are scalable vision learners." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2022.

• Peng, Zhiliang, et al. "Beit v2: Masked image modeling with vectorquantized visual tokenizers." *arXiv preprint arXiv:2208.06366* (2022).

Regeneration as a pretraining task

 Masked image modeling – Masked autoecoders

 Using masked autoencoders for specific tasks (segmentation, depth estimation, object detection)



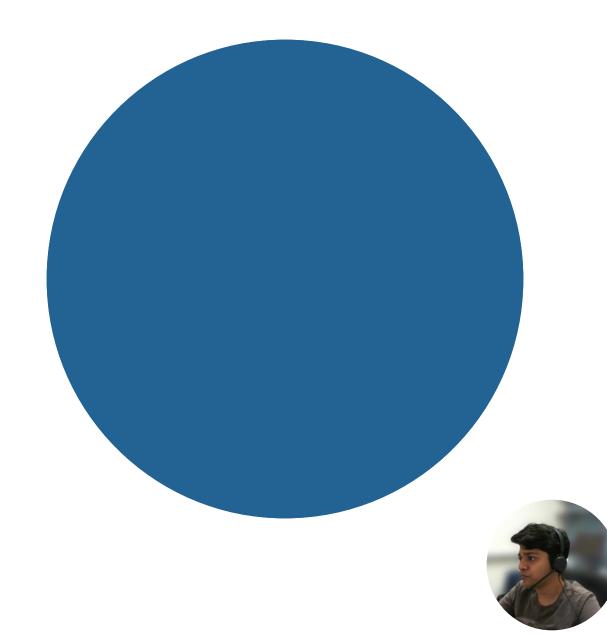
Sources:

- Li, Junnan, et al. "Align before fuse: Vision and language representation learning with momentum distillation." *Advances in neural information processing systems* 34 (2021): 9694-9705.
- Pathak, Deepak, et al. "Context encoders: Feature learning by inpainting." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016.

Train generative models using a reconstruction scheme

- Drop certain regions or mask several pixels
- Using reconstruction loss to enhance the representation power.
- Train the models with unsupervised manner as like adversarial loss

Motivation



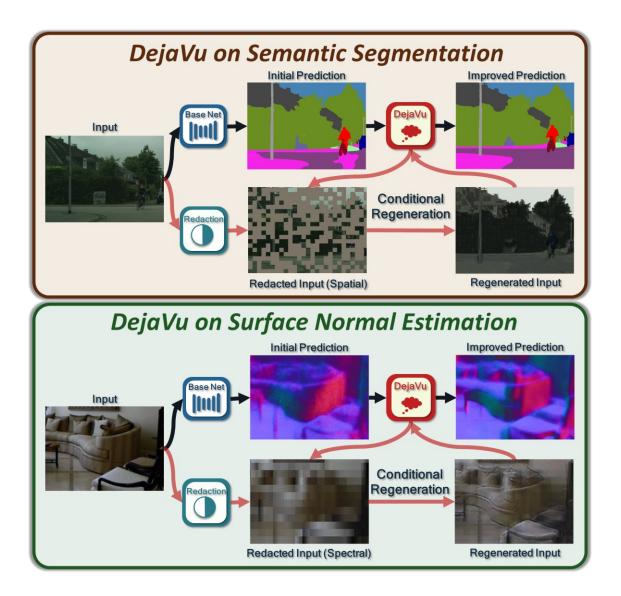
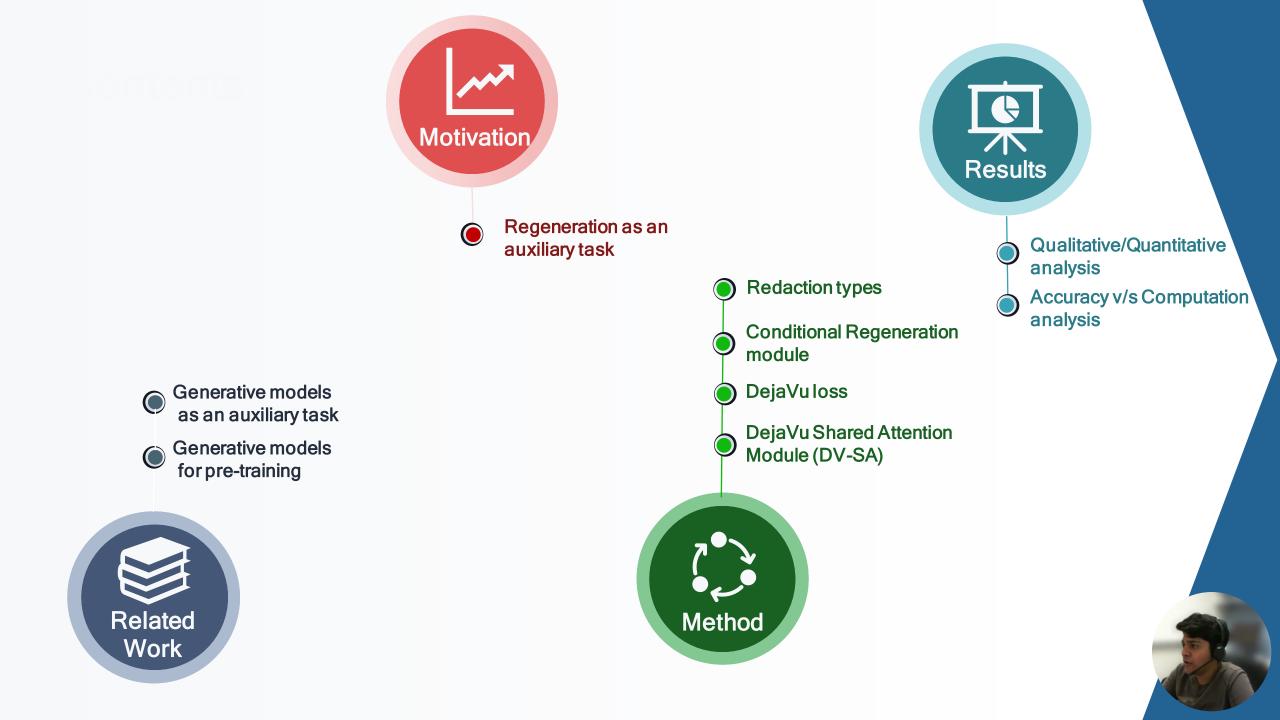
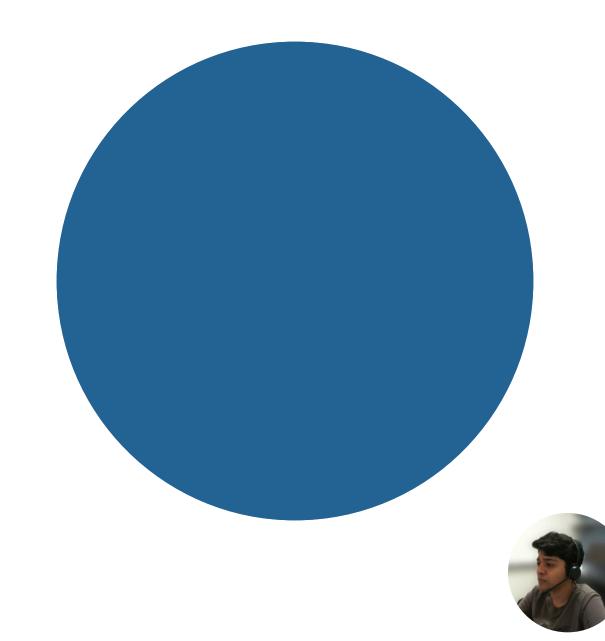


Image Regeneration as an auxiliary task

- Using image regeneration as an auxiliary task to improve dense predictions.
- We control the types of redactions based on the dense task.
- Inpainting-based regeneration is a good base for segmentation, whereas spectral regeneration improves tasks such as surface normal or depth estimation.



Method



Method : Types of redaction

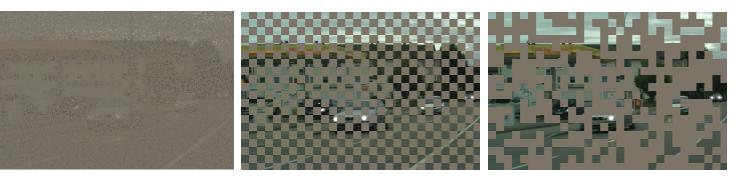
Various redaction types based on the task

- Spectral redaction: Redacting frequencies
- Spatial redaction: Redacting pixels

Input image

Spectral (Lowpass)

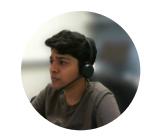
Spectral (Bandstop)



Spatial (Random)

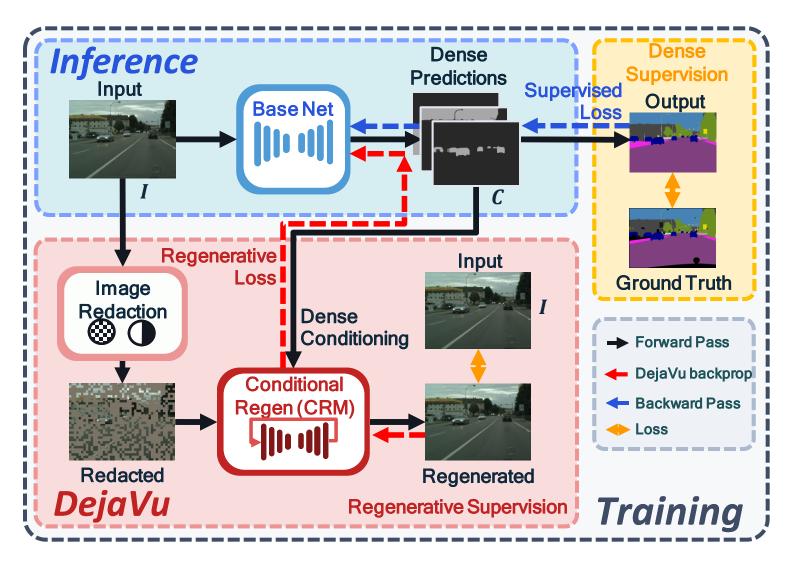
Spatial (Checkerboard)

Spatial (Random Blocks)



Method : The DejaVu loss function

Key Idea and implementation of the DejaVu loss

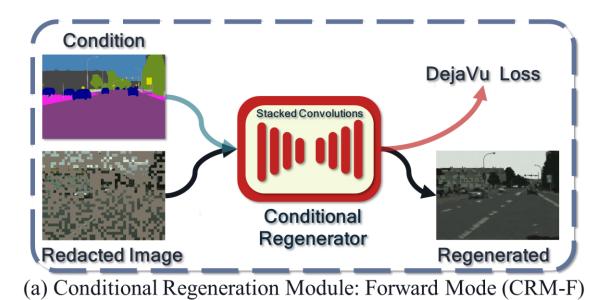


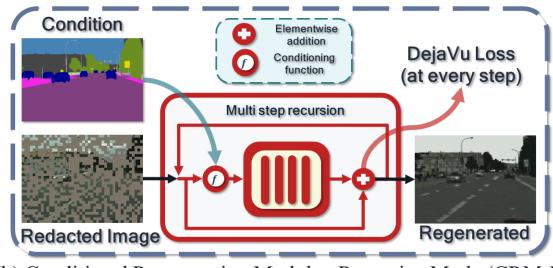
- Training: base model
- Dense Supervision
- Image Redaction
- Conditional regeneration
- Regenerative supervision
- Inference: using only base
 model
- DejaVu pushes the network to learn accurate dense predictions

Method : Conditional Regeneration Module (CRM)

Two types of CRM modules which were studies

- Forward Mode
- Recursive Mode



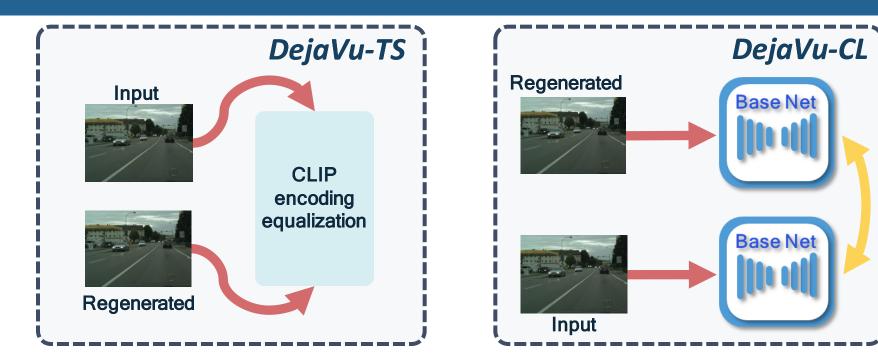


(b) Conditional Regeneration Module : Recursive Mode (CRM-R)

Method : Further supervision with DejaVu

Two types of objectives once the regenerated images are obtained

- Text supervision loss with CLIP (DejaVu-TS)
- Cyclic consistency loss (DejaVu-CL)

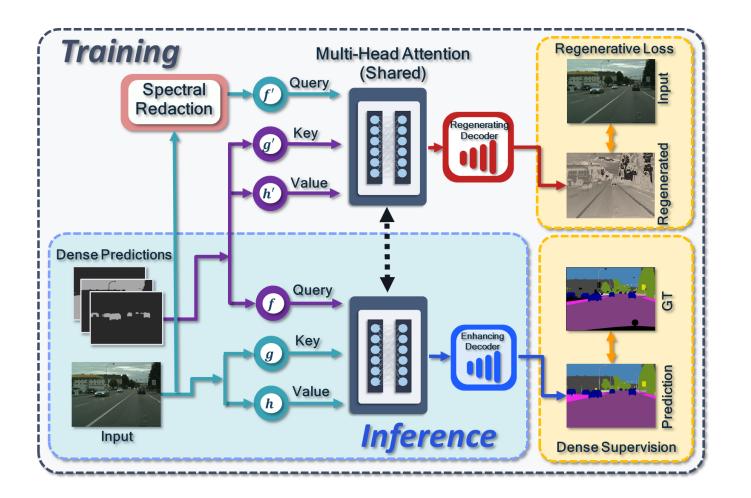


Source:

 Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference on machine learning. PMLR, 2021.

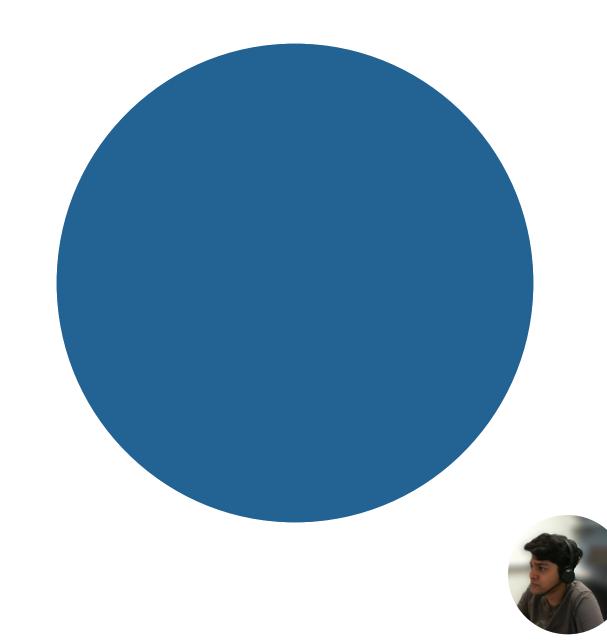
Method : The DejaVu Shared Attention Module (DejaVu-SA)

Key Idea and implementation of the DejaVu loss



- Shared attention module to capture regeneration context
- Adding computations to the baseline model
- Shared computations to perform generation and the dense task.

Results



Results: Semantic Segmentation

(a) Input

(b) Ground Truth (c) Baseline Prediction

(d) Our Prediction

(e) Redacted Image (f) Regenerated Image

Cityscapes

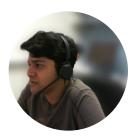
DenseCLIP [63]

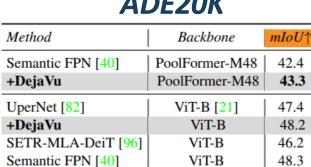
Mask2Former [16]

+DejaVu

+DejaVu

Backbone	Method	mloU↑	$GMacs\downarrow$
HRNet18	HRNet [75]	77.6	19
	+DejaVu	78.8	19
	HS3 [4]	78.1	19
	HS3-Fuse [4]	81.4	39
	OCR [80]	80.7	39
	+DejaVu	82.0	39
MiT-B5	Segformer [83]	84.0	362
Swin-L [52]	Mask2Former [16]	83.3	251
	SeMask [34]	84.0	258
ViT	ViT Adapter [14]	84.9	1089
HRNet48	HRNet	84.7	175
	+DejaVu	85.4	175
	OCR	86.1	348
	+DejaVu	86.5	348
	HMS [70]	86.7	893
	+DejaVu	87.1	893





ViT-B

ViT-B

Swin-L

Swin-L

49.8

50.3

56.0

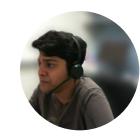
56.5

ADE20K

Results: Panoptic Segmentation

MS-COCO

Method	Backbone	$PQ\uparrow$	$PQ^{st}\uparrow$	$PQ^{th}\uparrow$
MaX-Deeplab [67]	Max-S	48.4	53.0	41.5
MaskFormer [16]	Swin-T	47.7	51.7	41.7
Mask2Former [15]	Swin-T	53.2	59.3	44.0
+DejaVu	Swin-T	54.3	60.5	44.9
MaX-Deeplab [67]	Max-L	51.1	57.0	42.2
K-Net [82]	Swin-L	54.6	60.2	46.0
MaskFormer [16]	Swin-L	52.7	58.5	44.0
Mask2Former [15]	Swin-L	57.6	64.2	47.5
+DejaVu	Swin-L	58.0	64.4	48.3

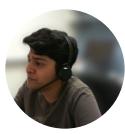


(b) Ground Truth

(c) Baseline Prediction

(d) Our Prediction

Results: Multi-Task Learning



NYUD-v2

Method	Seg.(mIoU) \uparrow	$Depth(aErr) \downarrow$	$Norm(mErr)\downarrow$
MTL [9]	36.95	0.5510	29.51
+DejaVu	37.40	0.5426	28.74
DWA [50]	36.46	0.5429	29.45
GradNorm [13]	37.19	0.5775	28.51
MTAN [50]	39.39	0.5696	28.89
MGDA [66]	38.65	0.5572	28.89
XTC [43]	41.00	0.5148	28.58
+DejaVu	42.69	0.4996	27.49

Source:

٠

Hong Li, Xialei Liu, and Hakan Bilen. Learning multiple dense prediction tasks from partially annotated data. In Proceedings of the IEEE/CVF Conference on Computer Vi sion and Pattern Recognition, pages 18879-18889, 2022.

(a) Input

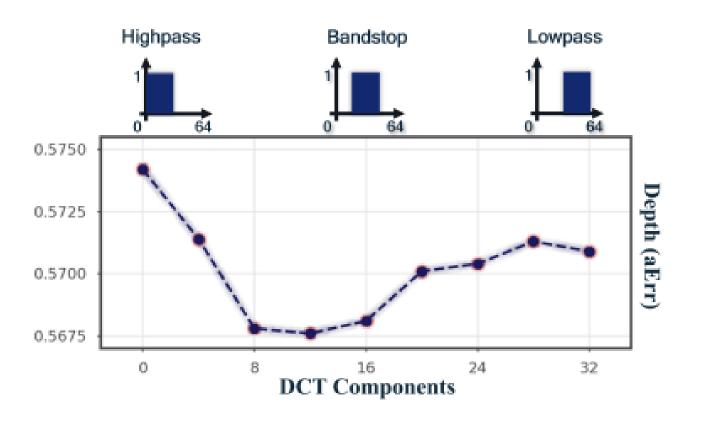
(b) Ground Truth (c) Baseline Prediction

(d) Our Prediction

(e) Redacted Image (f) Regenerated Image

Redacting various bands of spectra

Studying the effect of redacting varying band of spectra for NYUD-v2 depth estimation



Image

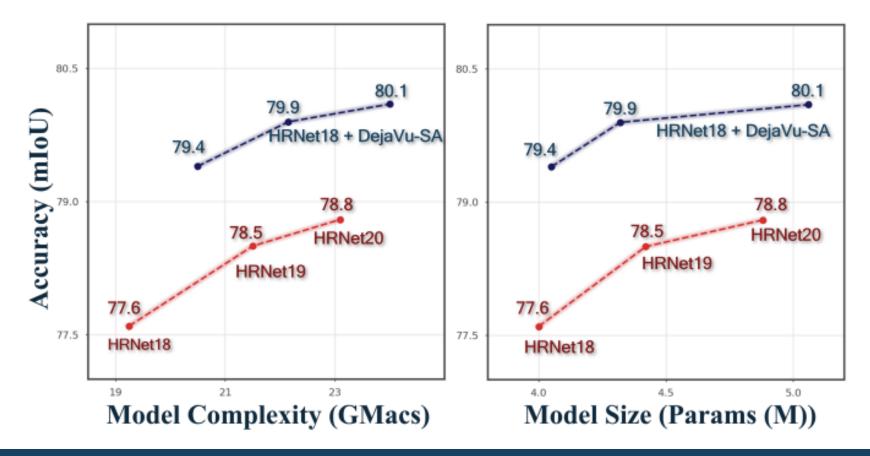
Lowpass

Bandstop

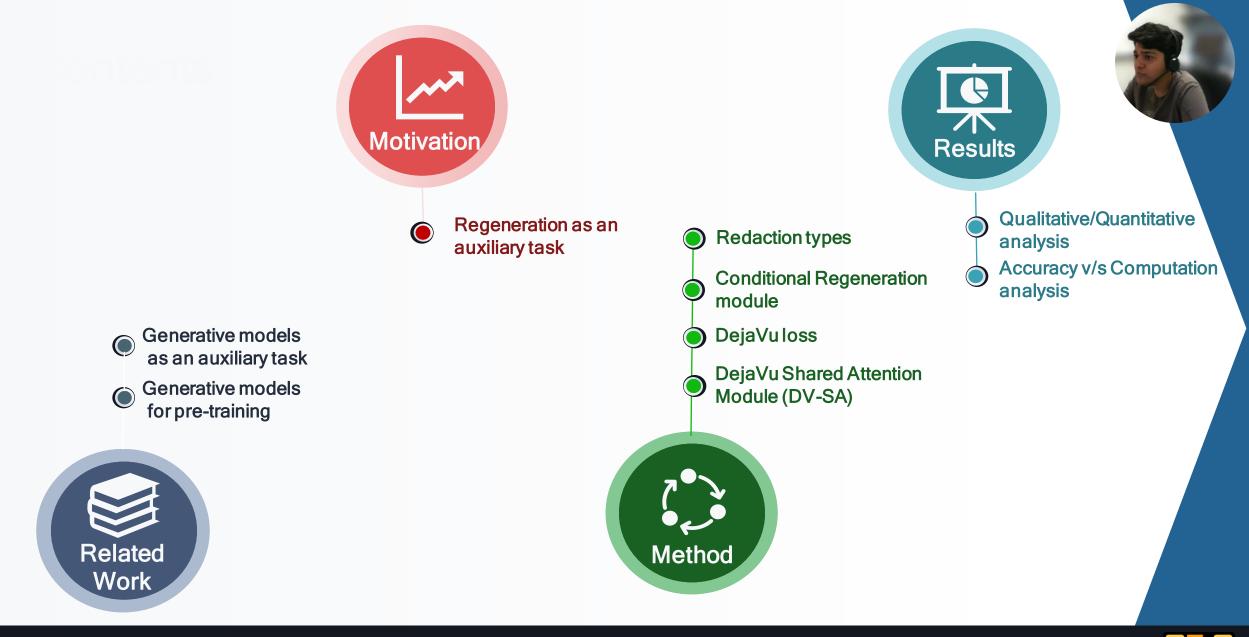
The error is lowest for middle-band redaction as most of the shape information is stored in the middle band

DejaVu-Shared Attention module

Varying the base model size v/s adding DejaVu-SA module



The DejaVu-SA module does increase computations, but provides a better accuracy-computation tradeoff compared to simply scaling up the base model



ArXiv: https://arxiv.org/pdf/2303.01573.pdf

Qualcom

Thank you

Follow us on: **f** ♥ **in** ☉ For more information, visit us at: www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2018-2021 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm is a trademark or registered trademark of Qualcomm Incorporated. Other products and brand names may be trademarks or registered trademarks of their respective owners. References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and substantially all of our products and services businesses, including our QCT semiconductor business.