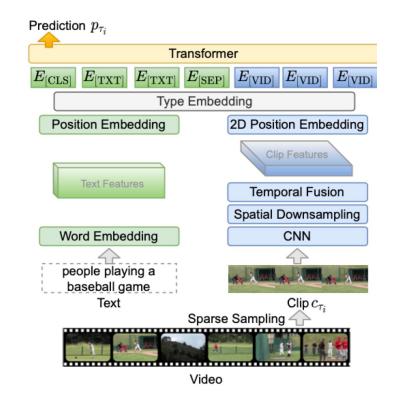


All – in – one: Exploring Unified Video-Language Pre-training

Presented by [Alex] Jinpeng Wang 9 20th, 2022

Stage 1: Motivation

Video-language Pretrain Framework

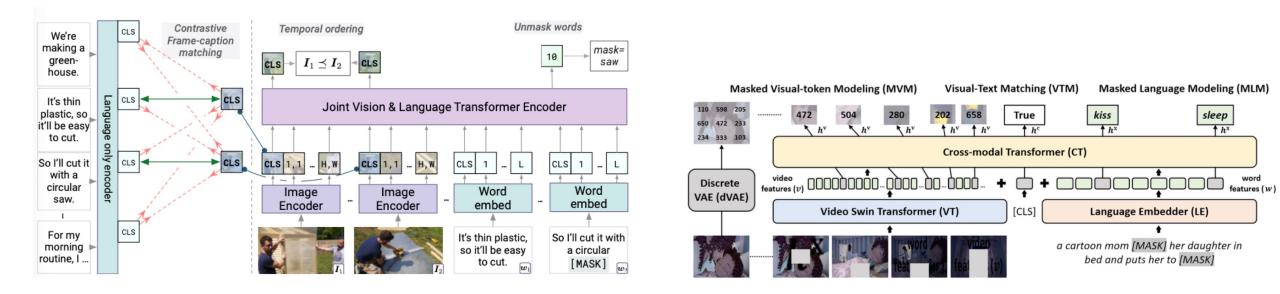

First look at these video-language pretrain framework

Cross-modal Masked Masked action (verb) Masked object (noun) matching language modeling classification classification Noun_i [SEP] [CLS] rotate shrimp [SEP] rotate add Noun ActBERT Position 6 8 0 2 3 embedding Segment SA SA SA SR SB SA SB S_B S₄ embedding Token [MASK] [SEP] [ACT] [REGION] [REGION] [SEP] [CLS] [ACT] rotate embedding Spatial position encoding Visual (action) \square \square embedding Global stacked frames Local object regions Rotate Add Add spinach. Rotate shrimp balls.

ActBert, CVPR' 20

3D CNN + Faster RCNN + ActBERT

2D CNN + BERT + CT



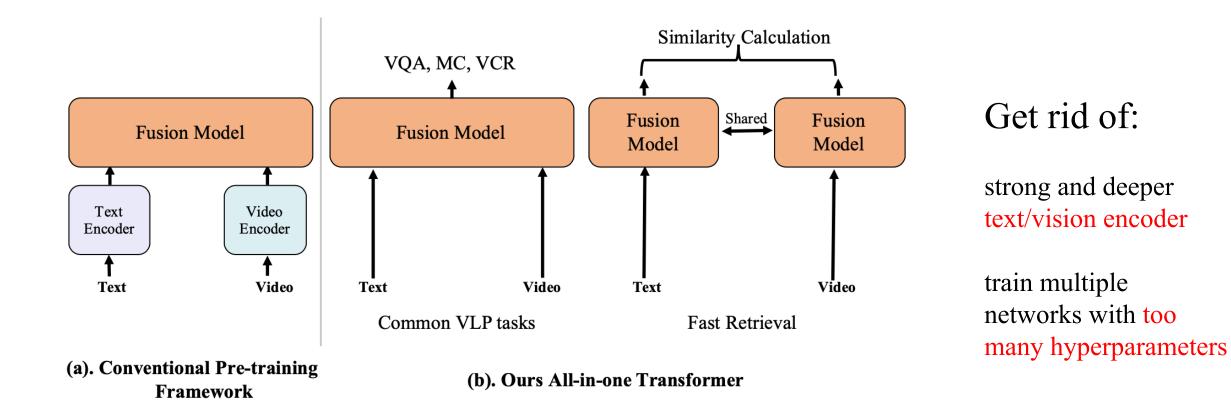
ClipBert, CVPR' 21

Video-language Pretrain Framework

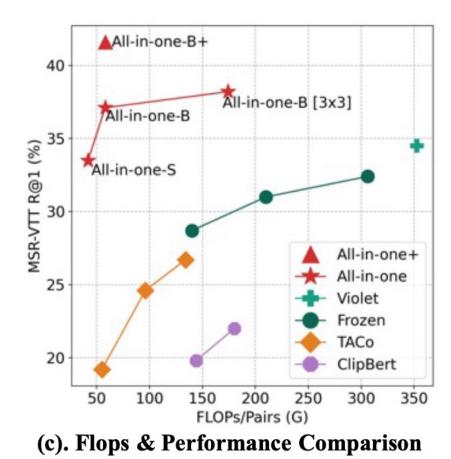
2D CNN + LE + CT

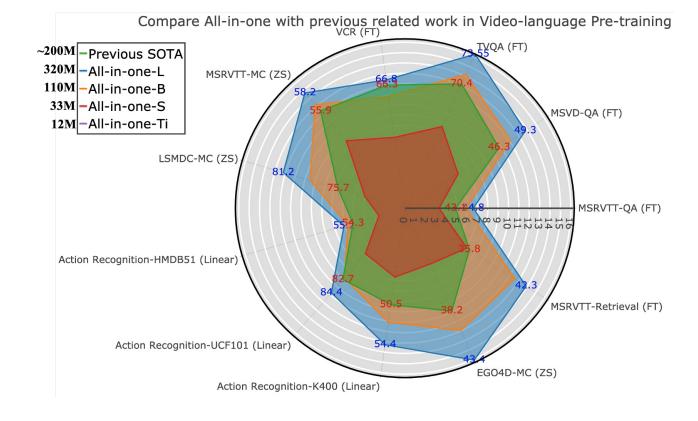
Video Swin + VAE + LE + CT

VIOLERT, Arxiv' 21


MERLOT, ICML' 21

Video-language Pretrain


- Video-language Pretrain is never an easy thing due to:
 - Optimize at least **3-4 networks**. (hard to train)
 - Large flops. (unaffordable)
 - Large-scale data (hundreds of **millions** videos=tens of **billions**-level frames).


Our Motivation: Conduct e2e pretrain with only 1 network with limited flops & limited frames (sparse sampling).

Perform Modality Interaction

Compare with previous SOTAs

Stage 2: Methodology

All-in-one

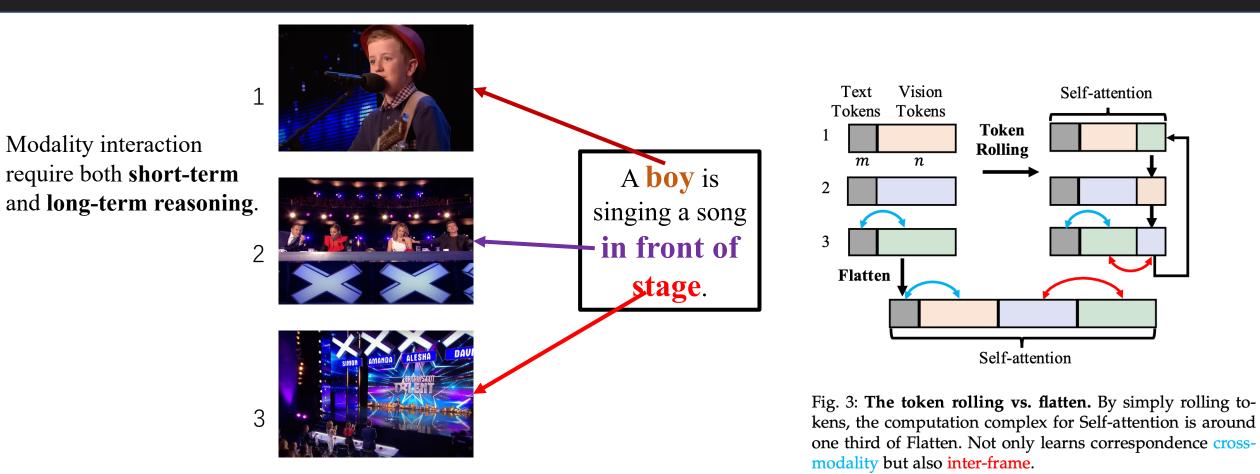

0/1 $12 \times Block$ Modality Type VTM Encoding Temporal Token Patchifier Roll Layer Average Attention Forward MLM Feed Self Concat Positional Encoding Tokenizer VTC A boy is singing a Text song in front of [MASK].

Fig.2: Model overview. For simplicity, we don't show the normalized layer.

- Shared self attention/Fe ed Forward
- Average before last head
- Based on VIT

Temporal Token Rolling Layer

Parameter-free

Stage 3: Experiments

PT & FT Setting

Pretrain

Pretrain 400K steps on 128 NVIDIA A100 GPUs with a batch size of 2,048; Adam. Warm up 0.1

```
PT data:
(1). All – in – one: Webvid-2.5M, Howto100M (132.5M video-text pairs, 2 days on 128 GPUs)
(2). All – in – one*: Webvid-2.5M, Howto100M &YT-Temporal 180M (312.5M video-text pairs, 1 week on 128 GPUs)
```

Fine-tune

four popular video-and-language tasks:

text-to-video retrieval, video question answering, multiple-choice and visual commensense reasoning across 12 different datasets.

Other tasks include: action recognition, image QA, image-text retrieval.

Video Image Co-training (All-in-one+)

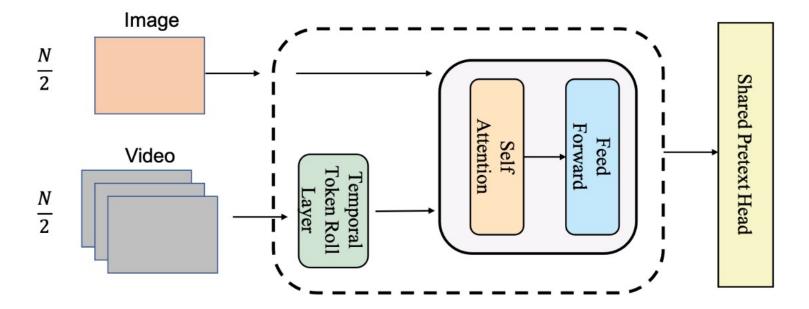


Fig. 5: The image and video co-training pipeline.

Video-Question Answering

Method	Nets	Params	Pre-training Data	Frames	Action	Transition	FrameQA
Heterogeneous [11]	T+V+LSTM	121	_	35	73.9	77.8	53.8
HCRN [28]	T+V+LSTM	-	-	16	75.0	81.4	55.9
QueST [20]	T+V+LSTM	-	-	16	75.9	81.0	59.7
ClipBERT [29]	T+V+CE	137M	COCO + Visual Genome	1×1	82.9	87.5	59.4
VIOLET [12]	T+V+CE	198M	CC3M + WebVid	16	87.1	93.6	-
All-in-one-Ti	CE	12M	WebVid + HowTo100M	3	80.6	83.5	53.9
All-in-one-S	CE	33M	WebVid + HowTo100M	3	91.2	92.7	64.0
All-in-one-B	CE	110M	WebVid + HowTo100M	1	92.9	94.2	62.5
All-in-one-B	CE	110M	WebVid + HowTo100M	3	92.7	94.3	64.2
All-in-one-B+	CE	110M	CC3M + WebVid	3	94.4(7.3)	94.5(0.91)	66.4(7.0^)
All-in-one-B+	CE	110M	CC3M + WebVid + HowTo100M	3	96.3(9.2^)	95.5(1.9^)	67.3 (7.9^)
All-in-one-B [384]	CE	110M	WebVid + HowTo100M	3	94.7	95.1	65.4
All-in-one-B *	CE	110M	CC3M + WebVid + YT-Temporal	3	95.5	94.7	66.3

(a) Three sub-tasks on TGIF-QA test set (the first row are methods w/o. pre-training). "*T*" refers to text encoder, "*V*" is video encoder and "*CE*" is cross-modality encoder. 384 means the resolution is 384×384 for each frame while the default is 224×224 .

Method	Frames	Accuracy	Method	Frames Accuracy			Method	Frames	Accuracy	
AMU [54]	16	32.5	QueST [20]	10	36.1		PAMN [22]	32	66.3	
Heterogeneous [11]	35	33.0	HCRN [28]	16	36.1		Multi-task [21]	16	66.2	
HCRN [28]	16	35.6	SSML [2]	16	35.1		STAGE [30]	16	70.5	
ClipBERT [29]	4×2	37.4	CoMVT [42]	30	42.6		CA-RN [13]	32	68.9	
VIOLET [12]	16	43.1	Just-Ask † [56]	32	46.3		MSAN [23]	40	70.4	
All-in-one-S	3	39.5	All-in-one-S	3	41.7		All-in-one-S	3	63.5	
All-in-one-B	3	42.9 (0.2↓)	All-in-one-B	3	46.5 (0.2↑)		All-in-one-B	3	69.8	
All-in-one-B	3×3	44.3 (1.2↑)	All-in-one-B	3×3	47.9 (1.6)		All-in-one-B	3×3	71.3 (1.1^)	
All-in-one-B+	3	44.6 (1.5 [†])	All-in-one-B+	3	48.2 (1.9 [†])		All-in-one-B+	3	71.5	
All-in-one-B *	3	46.8	All-in-one-B *	3	48.3		All-in-one-B *	3	72.0	
(b) MSRVTT-QA test set.			(c) MSVD-QA test set.				(d) TVQA val set.			

TABLE 2: Comparison with state-of-the-art methods on VQA. The columns with gray color are **open-ended VQA** and the others are **multiple-choice VQA**. † means use additional large-scale VQA dataset HowToVQA60M [56] for pre-training. * means pre-training with additional YT-Temporal 180M [60].

Open-ended VQA:

Select 1 answer from N(1600/3100) candidates. Multiple Choices VQA:

Question & Answers are both sentences.

Method	Nets	PT Data	Params	Flops	rames		9K Trai	n		7K Trai	n
						R@1	R@5	R@10	R@1	R@5	R@10
ActBERT [63]	<i>T+O+V+CE</i>	HowTo	275M	-	32	-	-	-	16.3	42.8	56.9
ClipBERT [29]	T+V+CE	COCO+VG	137M	183.2G	8×2	-	-	-	22.0	46.8	59.9
TACo [57]	T+V+CE	HowTo	212M	140.5G	48	28.4	57.8	71.2	24.8	52.1	64.0
VIOLET [12]	T+V+CE	CC+WebVid	198M	351.4G	16	34.5	63.0	73.4	-	-	-
Frozen [4]	T+V	CC+WebVid	232M	217.3G	8	31.0	59.5	70.5	-		-
OA-Trans [48]	T+O+V	CC+WebVid	232M	217.3G	8	35.8	63.4	76.5	32.1	61.0	72.9
All-in-one-B	CE	HowTo	110M	58.7G	3	29.5	63.3	71.9	26.5	59.4	69.8
All-in-one-B	CE	HowTo+WebVid	110M	58.7G	3	37.1	66.7	75.9	33.8	64.2	74.3
All-in-one-B+	CE	CC+WebVid	110M	58.7G	3	39.7	67.8	76.1	35.9	66.1	75.1
All-in-one-B+	CE	CC+HowTo+WebVid	110M	58.7G	3	41.8	68.5	76.7	37.3	66.4	75.6

(a) The retrieval performance on MSR-VTT 9K and 7K training split. For Nets, "O" is object extractor. HowTo is short for HowTo100M [40]. Notice that COCO [33], CC (short for Conceptual Captions [43]) and VG (short for Visual Genome [26]) are all image-text datasets, which are not suitable for temporal modeling during pre-training.

Method	Frames	R@1	R@5	R@10	MdR
Dense [25]	32	14.0	32.0	-	34.0
FSE [61]	16	18.2	44.8	-	7.0
HSE [61]	8	20.5	49.3	-	-
ClipBERT [29]	4×2	20.9	48.6	62.8	6.0
All-in-one-B	3	21.5	50.3	65.5	6.0
All-in-one-B	3×3	22.4	53.7	67.7	5.0

Method	Frames	R1	R5	R10	MdR
FSE [61]	16	13.9	36.0	-	11.0
CE [34]	16	16.1	41.1		8.3
ClipBERT [29]	8×2	20.4 31.0	48.0	60.8	6.0
Frozen [4]	8		59.8	72.4	3.0
All-in-one-B	$3 \\ 3 \times 3$	31.2	60.5	72.1	3.0
All-in-one-B		32.7	61.4	73.5	3.0

(b) ActivityNet Caption val1 set.

(c) DiDeMo test set.

TABLE 3: Comparison with state-of-the-art methods on text-to-video retrieval. We gray out dual-stream networks that only do retrieval tasks. Notice that OA-Trans [48] uses additional offline object features.

Multiple-Choice & Visual Commonsense Reasoning

Method

MERLOT [60]

MERLOT [60]

All-in-one-B

All-in-one-B

All-in-one-B

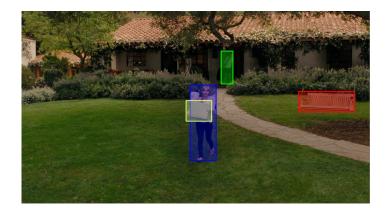
PT Data

CC3M+COCO

HowTo100M

CC3M+COCO

HowTo100M


HowTo100M

with different source of pre-training data.

TABLE 6: The visual commonsense reasoning result

Method	Frames	MSRVTT	LSMDC
JSFusion [58]	40	83.4	73.5
ActBERT [63]	32	85.7	-
ClipBERT [29]	8×2	88.2	
MERLOT [60]	8	-	81.7
VIOLET [12]	16	-	82.9
All-in-one-B	3	91.4	83.1
All-in-one-B	3×3	92.0	83.5
All-in-one-B+	3	91.9 (3.8↑)	83.9 (1.01)
All-in-one-B *	3	92.3	84.4
All-in-one-B (zero-shot)	3	80.3	56.3
All-in-one-B+ (zero-shot)	3	82.2	58.1

TABLE 4: Comparison with state-of-the-art methods on multiple-choice task.

Color Mask:

Mask

 \checkmark

 \checkmark

 \checkmark

Accuracy

58.9

66.3

60.5 (1.6[†])

65.2

68.4 (2.1⁺)

Method	Parameters	#Frames		K400			HMDB5	1		UCF101	
			Top-1	Top-5	Top-10	Top-1	Top-5	Top-10	Top-1	Top-5	Top-10
MIL-NCE [39]	157M	32	-	-	-	53.1	87.2	92.8	82.7	-	-
Frozen [4]	232M	8	50.5	80.7	90.2	54.3	88.0	94.8	81.3	94.3	96.2
Time Average	110M	3	44.3	75.2	87.3	43.1	75.5	90.5	77.6	86.4	90.9
All-in-one-B All-in-one-B	110M 110M	3 8	49.8 52.4	79.8 83.2	90.7 92.9	51.9 54.7	84.1 88.2	93.4 95.2	81.1 82.8	93.8 95.1	95.5 96.9
All-in-one-B+ (Not Shared) All-in-one-B+ (Shared)	110M 110M	8 8	53.2 51.4	83.5 78.5	92.7 89.9	55.2 53.1	89.1 87.1	95.8 93.2	84.1 82.0	95.7 94.0	97.8 96.0

TABLE 9: The linear probe results on action recognition benchmarks over kinetics 400, hmdb51 and UCF101 datasets. Notice that two pre-text heads are not shared for image-text and video-text pairs and the video-text head are used for fine-tuning.

Cloze evaluation

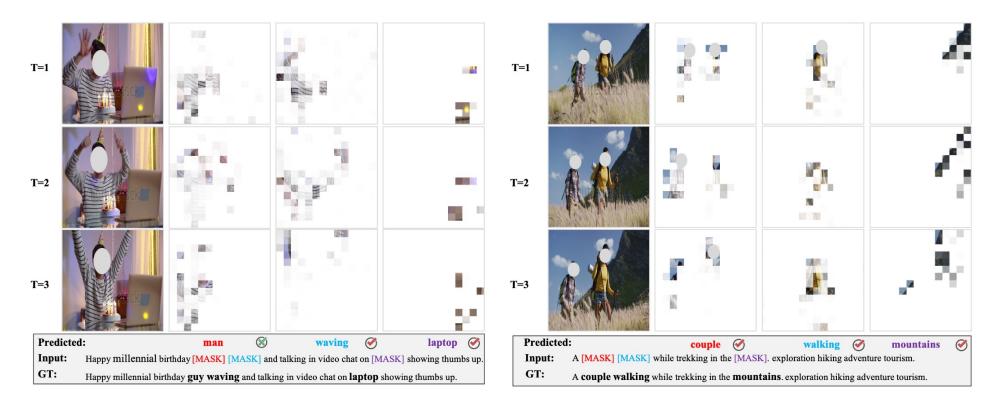


Fig. 8: *Cloze* evaluation: Given a video and its paired masked text, the model is asked to *fill the masked words and show its corresponding high attention patch for this masked word.* These samples are sampled from the validation set of Webvid [4].

Image Video Co-training Visualization

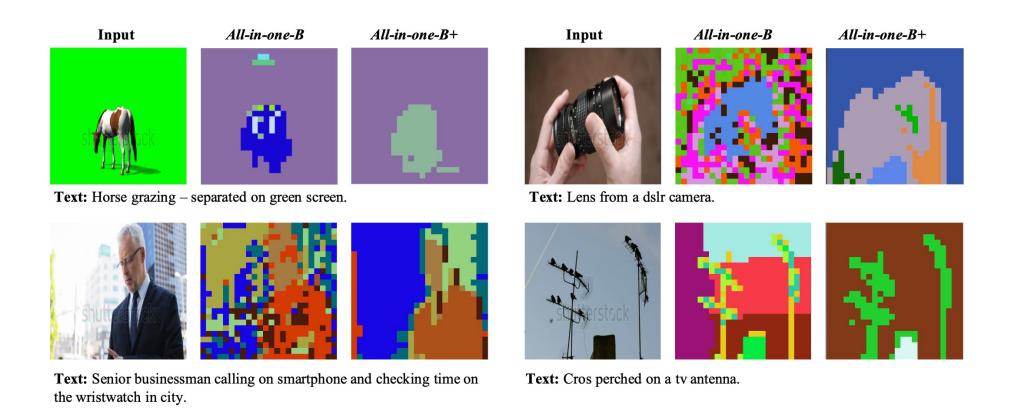


Fig. 12: The token cluster visualization result. By co-training with well-annotated image dataset, the *All-in-one* learns better cluster.

Contribution

- 1. The **first e2e early-fusion** (independent encoder free) **one-stream** framework in video-language pretrain, with almost 50% parameters and 30% flops among existing pretrain framework.
- 2. A novel parameter-free Temporal Token Rolling for temporal alignment.
- 3. With 3 frames input, T2RT leading to competitive even better results previous sota results (16+frames) on 4 benchmarks.
- Release a simplest codebase for video-language pre-training.

Code

Thanks & QA!

https://sites.google.com/view/showlab