

Learning Transformation-Predictive Representations for Detection and Description of Local Features

Zihao Wang, Chunxu Wu, Yifei Yang, Zhen Li

CVPR 2023

Background

Local visual descriptors are fundamental to various computer vision applications such as **camera calibration**, **3D reconstruction**, **vSLAM**, and **image retrieval**.

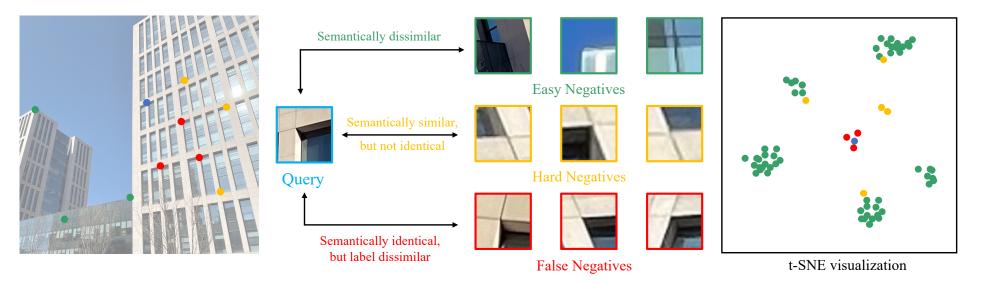
[Image Matching Challenge]

[ScanNet]

[Long-Term Visual Localization]

[SLAM]

Motivation and Contribution



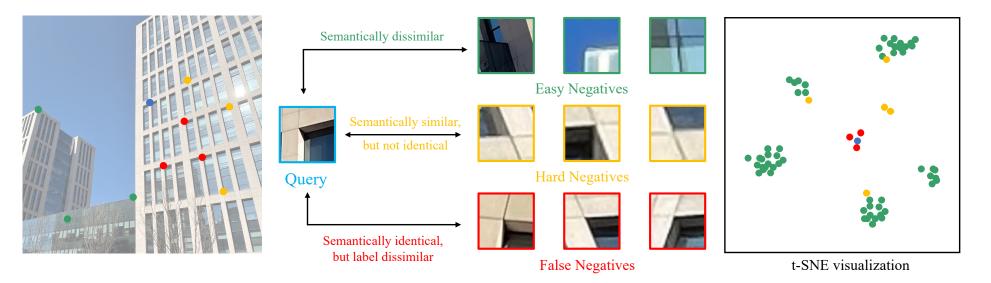
> Motivation I:

- Negative samples are introduced to contrastive learning to keep the uniformity and avoid model collapse, while raise the computational load and memory usage heavily.
- Some false negatives are labeled with hard negatives, leading to inconsistent supervision.

> Contribution I:

we propose to learn transformation-predictive representations for joint local feature learning, using none of the negative sample pairs and avoiding collapsing solutions.

Motivation and Contribution



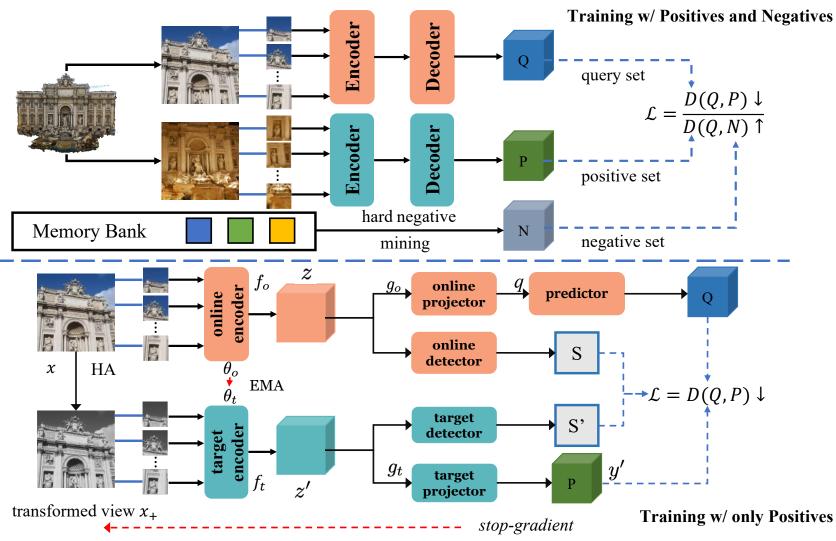
> Motivation II:

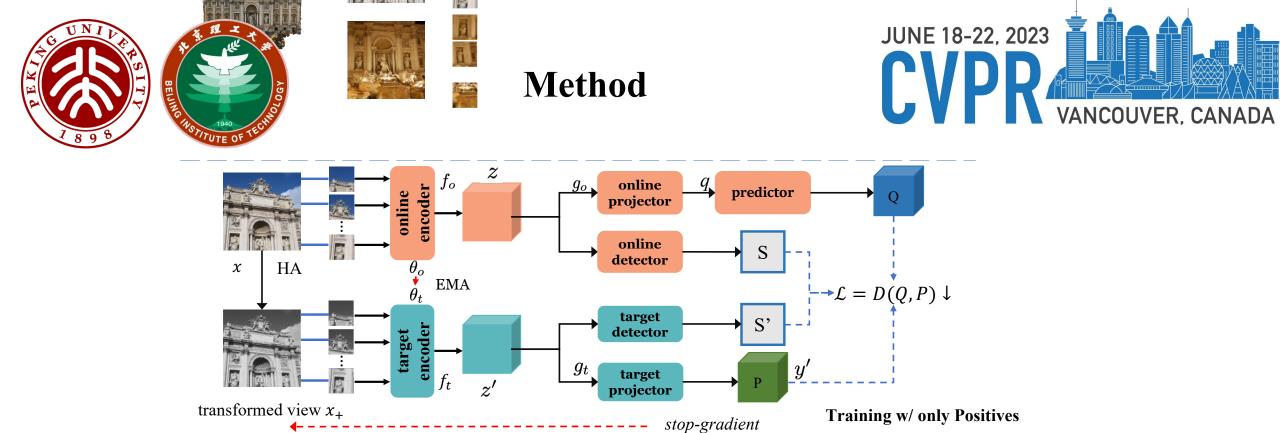
- hard positives are encouraged as training data to expose novel patterns, while increasing the training difficulty.
- All positives with different transformation strength are all labeled as coarse '1'.

> Contribution II:

We adopt self-supervised generation learning and curriculum learning to soften the hard positives into continuous soft labels.

Overall Architecture





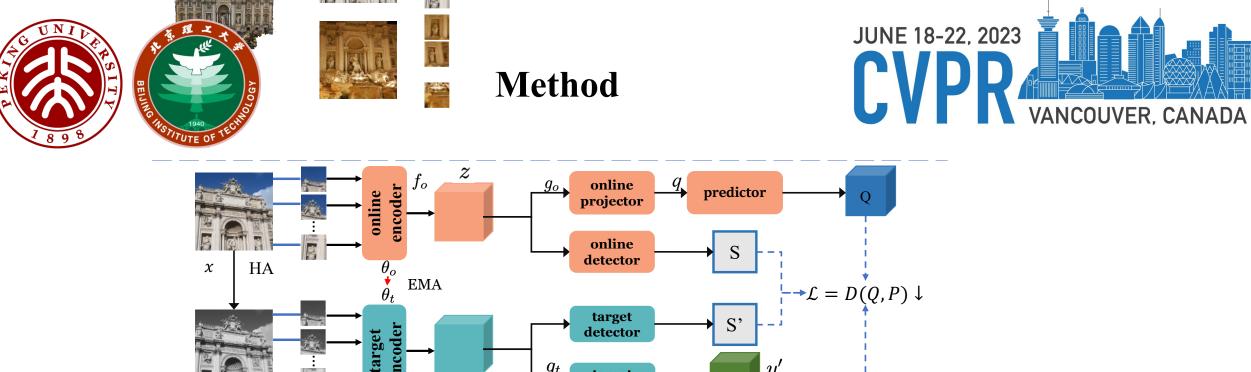
Target encoder params are Exponential Moving Average of online encoder:

$$\theta_t \leftarrow \tau \theta_t + (1 - \tau) \, \theta_o$$

Learning without Negative Samples!

The transformation prediction loss is computed on the corresponding locations:

$$egin{split} \mathcal{L}_{ ext{pred}}^{c} &= ig(1 - ig\langle y_{c}, y_{c}^{\prime}ig
angleig) \ &= ig(1 - ig\langle q\left(g_{o}\left(z
ight)
ight)_{c}, g_{t}\left(z^{\prime}
ight)_{c}ig
angleig) \end{split}$$



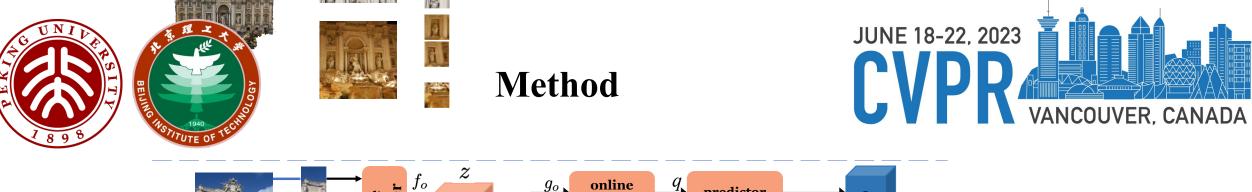
transformed view x_+ $f_t = z'$ $g_t = target projector projector projector projector transformed view <math>x_+$ stop-gradient $transformed view x_+$ $transformed view x_+$

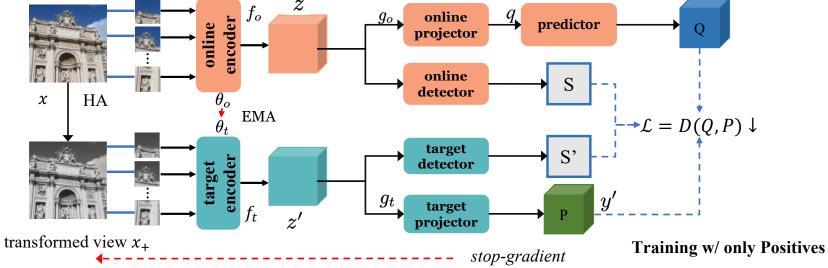
Learning with Soft Labels! Contrastive loss with hard positive label, i.e., 1:

$$\mathcal{L}_{ ext{hard}} = rac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} rac{s_c s_c'}{\sum_{n \in \mathcal{C}} s_n s_n'} \mathcal{L}_{ ext{pred}}^c$$

Contrastive loss with **soft** positive label:

$$\mathcal{L}_{\text{soft}} = \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \frac{s_c s_c'}{\sum_{n \in \mathcal{C}} s_n s_n'} \left(l_c + 1 - \mathcal{L}_{\text{pred}}^c \right)$$





Self-supervised Generation Learning: $l_c = e^{-(1 - \langle y_c^{\omega^{-1}}, y'_c^{\omega^{-1}} \rangle)/\lambda}$

How to generate Soft Labels?

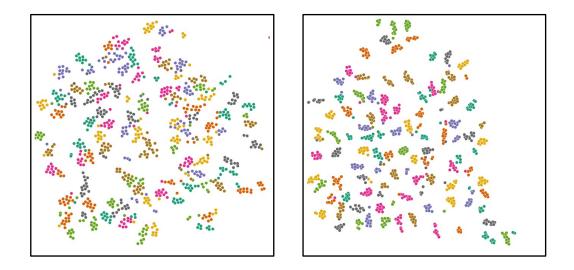
Curriculum Setting for Positives Generation: $l_c = e^{-\alpha \left(1 - \left\langle y_c^{\omega^{-1}}, y_c'^{\omega^{-1}} \right\rangle \right)/\lambda}$

Experiments

Method	MMA@3	AUC@2	AUC@5		
SIFT [28]	50.1	39.49	49.57		
HardNet [33]	62.1	42.61	56.85		
LF-Net [36]	53.2	38.74	48.69		
SuperPoint [11]	65.7	44.08	59.04		
DELF [35]	50.7	44.73	49.70		
ContextDesc [29]	63.2	47.23	58.25		
Key.Net [23]	72.1	40.87	56.04		
R2D2 [40]	72.1	43.35	64.17		
DISK [52]	77.2	52.33	69.80		
ALIKE [63]	70.5	51.65	69.04		
SSL+CAPS [31]	69.0	48.72	62.19		
LLF [49]	74.0	52.14	66.81		
MTLDesc [53]	78.7	55.02	71.42		
PoSFeat [24]	75.34	50.16	69.23		
D2-Net [12] (orig.)	40.3	19.49	37.78		
D2-Net [12] (our impl.)	44.5	22.35	43.17		
Ours(VGG)	49.6 ↑ 9.3	24.46 † 4.97	47.69 ↑ 9.91		
ASLFeat [30] (orig.)	72.2	50.10	66.93		
ASLFeat [30] (our impl.)	74.4	51.83	69.24		
Ours(DCN)	$\textbf{75.5} \uparrow \textbf{3.2}$	52.33 † 2.23	70.15 † 3.22		
Ours(TR)	79.8	57.18	73.00		

Comparative results on Hpatches.

We train key-points based on different backbone with our training methods, including VGG (D2-Net), DCN (ASLFeat), and Swin Transformer.



t-SNE visualization of description from different training methods. Left: D2-Net, Right: Ours(VGG).

Experiments

0				414													
Method Fo	Feat	Accuracy	Accuracy @ Thresholds (%) ↑		Mathad	EDC	RMSE/m↓										
	геш	0.25m,2°	0.5m,5°	5m,10°	Method	FPS	00	01	02	04	05	06	07	08	09	10	Avg.
RootSIFT [1]	11K	53.4	62.3	72.3	ORB [41]	20.6	59.46	610.35	72.68	19.26	238.60	83.46	72.72	66.06	119.21	63.52	140.5
SuperPoint [11]	7K	68.1	85.9	94.8	SuperPoint [11]	6.5	162.78	123.34	13.52	1.06	6.36	2.05	12.12	8.66	8.20	5.10	34.3
D2-Net [12]	14K	67.0	86.4	97.4	1												
R2D2 [40]	10K	70.7	85.3	96.9	D2-Net [12]	8.8	10.44	183.04	105.33	2.29	14.58	2.25	10.72	24.27	29.62	9.61	39.22
ASLFeat [30]	10K	71.2	85.9	96.9	R2D2 [40]	7.8	49.62	515.96	60.14	3.90	123.05	62.44	53.84	62.54	73.30	43.32	104.8
DISK [52]	10K	72.8	86.4	97.4	SOSNet [51]	6.3	171.67	309.83	10.36	0.47	14.68	4.07	15.35	10.75	3.24	7.67	54.8
MTLDesc [53]	7K	74.3	86.9	96.9	DISK [52]	6.5	32.77	149.98	18.67	0.45	5.97	4.38	12.88	32.85	4.33	4.81	26.7
Ours (TR)	10K	74.3	89.0	98.4	Ours (TR)	6.2	7.07	164.39	9.72	0.23	3.46	2.12	9.99	7.42	3.10	3.72	21.1

Performance on Aachen Day-Night Localization datasets Visual odometry localization performance based on different key-points in KITTI datasets.

Local descriptors trained with our method perform better on visual localization and odometry.

Thanks for Watching