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[Long-Term Visual Localization][ScanNet][Image Matching Challenge] [SLAM]

Local visual descriptors are fundamental to various computer vision applications such 
as camera calibration, 3D reconstruction, vSLAM, and image retrieval.

Background



Motivation and Contribution

Ø Motivation I:
• Negative samples are introduced to contrastive learning to keep the uniformity and avoid model

collapse, while raise the computational load and memory usage heavily.
• Some false negatives are labeled with hard negatives, leading to inconsistent supervision.

Ø Contribution I:
we propose to learn transformation-predictive representations for joint local feature learning, using 
none of the negative sample pairs and avoiding collapsing solutions.
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Motivation and Contribution

Ø Motivation II:
• hard positives are encouraged as training data to expose novel patterns, while increasing the training

difficulty.
• All positives with different transformation strength are all labeled as coarse ‘1’.

Ø Contribution II:
We adopt self-supervised generation learning and curriculum learning to soften the hard positives into 
continuous soft labels.
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Overall Architecture
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Method

Learning without
Negative Samples!

Target encoder params are Exponential Moving Average of online encoder:

The transformation prediction loss is computed on the corresponding locations:
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Method

Contrastive loss with hard positive label, i.e., 1:

Contrastive loss with soft positive label:

Learning with
Soft Labels!
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Method

Self-supervised Generation Learning:

Curriculum Setting for Positives Generation:

How to generate
Soft Labels?



Experiments

Comparative results on Hpatches.

t-SNE visualization of description from different 
training methods. Left: D2-Net, Right: Ours(VGG).

We train key-points based on different backbone with
our training methods, including VGG (D2-Net), DCN
(ASLFeat), and Swin Transformer.



Experiments

Visual odometry localization performance based on different key-points in 
KITTI datasets.

Performance on Aachen Day-Night 
Localization datasets

Local descriptors trained with our method perform better on visual localization and odometry.



Thanks for Watching


