

THU-PM-221

AVFormer: Injecting Vision into Frozen Speech Models for Zero-Shot AV-ASR

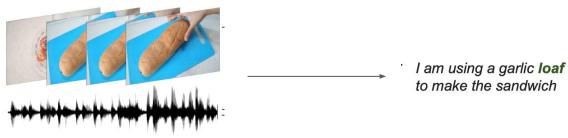
Paul Hongsuck Seo, Arsha Nagrani, Cordelia Schmid

Overview: Task is Audiovisual ASR (AV-ASR)

Incorporate visual context to ASR for robust speech recognition

- Useful in cases of heavily accented speech, background noise, ambiguous pronunciation
- Goes beyond lip motion
 - Visual frames can provide clues of objects, actions, backgrounds

Audiovisual input stream



Transcribe the speech, use the vision to help

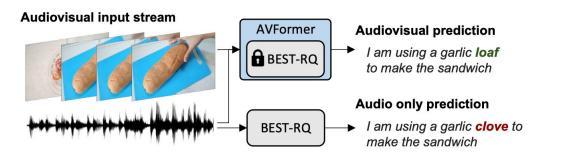
Overview: Method

Existing AV-ASR methods are developed **from scratch on new benchmarks**. **Re-inventing the wheel?**

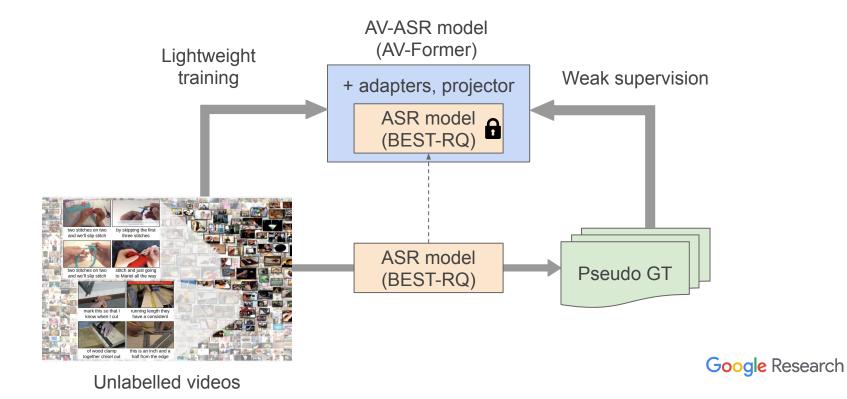
However,

there are many strong, large-scale ASR models (eg. <u>Best-RQ</u>), and visual models (CLIP)

Can we simply **inject CLIP visual features** into highly-engineered **existing ASR models without a new annotated dataset**?



Overview: Train on pseudo labels from HowTo100M



Overview: Results

State-of-the-art **zero-shot** results across **3 AV-ASR datasets**: spanning instructional videos and egocentric home videos

How2

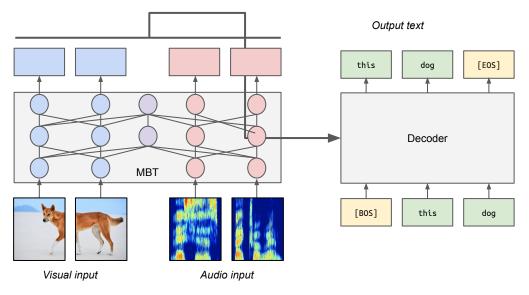
VisSpeech

Object "schooner" corrected to "scooter" Object "clove" corrected to "loaf"

"Drive" recognised from the road!

Existing AV-ASR methods

Developed from **scratch** and trained end-to-end **Costly** to train (early fusion of audio and video) Do not **generalise** well to new domains



Google Research

AVATAR: Unconstrained Audiovisual Speech Recognition, Gabeur et al. Interspeech 2022

Existing AV-ASR methods

Developed from **scratch** and trained end-to-end

However,

there are many **strong**, **large-scale** ASR models (eg. <u>Best-RQ</u>) that are

- Huge (billions of params)
- Trained with self-supervision in the audio domain
- Generalize well to new domains
- Achieve amazing performance on audio-only ASR benchmarks

There are **strong vision** models (eg. <u>CLIP</u>)

• Also great generalization

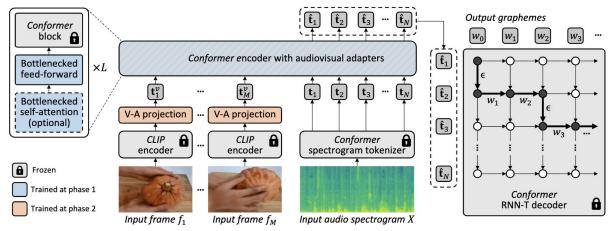
AVFormer: Lightweight Adapters

Method: Start with a frozen SOTA ASR model (<u>Best-RQ</u>, <u>ICML'22-paper</u> based on the conformer) and add frozen CLIP features to the input

Add two types of adapter layers

- 1) Bottleneck layers in the encoder block (allow domain adaptation)
- Visual projection layers (that transform CLIP features)

Only Adapters are trained, rest is frozen



AVFormer: Curriculum Strategy

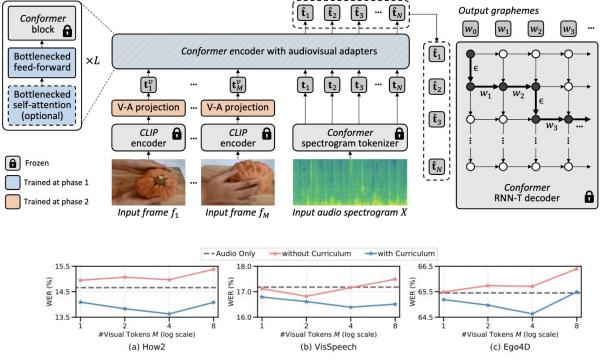
Method: Start with a frozen SOTA ASR model (<u>Best-RQ</u>, <u>ICML'22-paper</u> based on the conformer) and add frozen CLIP features to the input

Add two types of adapter layers

- 1) Bottleneck layers in the encoder block (allow domain adaptation)
- Visual projection layers (that transform CLIP features)

Only Adapters are trained, rest is frozen

Curriculum Strategy: Train (1) first then (2), crucial to allow model to use visual information



Lower WER is better, curriculum helps, visual tokens help

Train on pseudo labels from HowTo100M

Pre-training for Best-RQ (audio-only)

- LibriLight: large-scale unlabelled speech dataset.
- LibriSpeech: ASR benchmark with GT annotation but without visual inputs.

Lightweight training (non-transcribed videos with pseudo ground truth)

• HowTo100M: large-scale unannotated instructional videos.

Evaluate on zero-shot AV-ASR benchmarks

Pre-training for Best-RQ (audio-only)

- LibriLight: large-scale unlabelled speech dataset.
- LibriSpeech: ASR benchmark with GT annotation but without visual inputs.

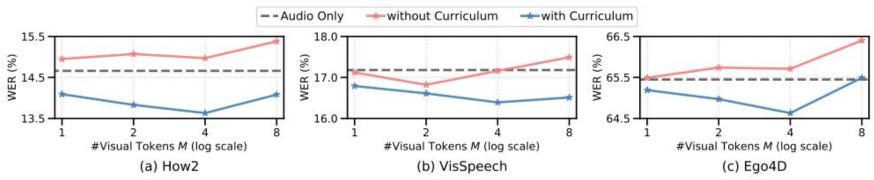
Lightweight training (non-transcribed videos with pseudo ground truth)

• HowTo100M: large-scale unannotated instructional videos.

Evaluation (transcribed videos from different domains) zero-shot

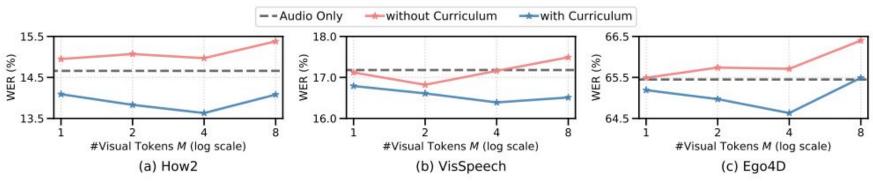
- How2: Instructional video clips with pseudo-GT from user generated captions.
- VisSpeech: Instructional video clips with high speech-vision correlation with GT.
- Ego4D: Egocentric video clips with GT.

Ablations



The curriculum helps on all 3 zero-shot AV-ASR datasets

Ablations



The curriculum helps on all 3 zero-shot AV-ASR datasets

The gains from the visual tokens and the adapters are complementary

Visual tokens	Adapters	How2	VisSpeech	Ego4D	
	8	21.90	31.61	77.98	
~		19.74	31.13	76.50	
	\checkmark	14.66	17.18	65.45	
\checkmark	\checkmark	13.63	16.39	64.63	

Ablations

----without Curriculum ----with Curriculum -- Audio Only 15.5 18.0 66.5 (%) 14.5 · MEK WER (%) WER (%) 17.0 65.5 13.5 16.0 64.5 8 8 2 #Visual Tokens M (log scale) #Visual Tokens M (log scale) #Visual Tokens M (log scale) (b) VisSpeech (a) How2 (c) Ego4D

The curriculum helps on all 3 zero-shot AV-ASR datasets

The gains from the visual tokens and the adapters are complementary

Visual tokens	Adapters	How2	VisSpeech	Ego4D	
	8	21.90	31.61	77.98	
\checkmark		19.74	31.13	76.50	
	\checkmark	14.66	17.18	65.45	
\checkmark	\checkmark	13.63	16.39	64.63	

Only **5%** of the HowTo100M dataset is needed to train our **lightweight** adapters

Training dataset size	How2	VisSpeech	Ego4D
5%	13.69	16.60	64.75
100%	13.69 13.63	16.39	64.63

Comparison to SOTA

- SOTA on zero-shot AV-ASR benchmarks (How2, VisSpeech, Ego4D) across domains
- While maintaining performance on traditional ASR benchmarks (Librispeech)

Note: Zero-shot ASR is a more useful setting for application/production

		HowTo100M PT						
Method	Modality	LibriSpeech PT	Pretrained params	Data %	LibriSpeech	How2	VisSpeech	Ego4D
AVATAR [11]	A	✓	-	_	8.85	39.43	65.33	110.86
AVATAR [11]	A+V	-	All	100	24.65	17.23	35.66	92.03
AVATAR [11]	A+V	\checkmark	All	100	24.08	18.37	35.59	71.97
BEST-RQ [6]	A	 ✓ 	2.490	-	1.60*	21.90	28.62	77.98
BEST-RQ [6]	Α	\checkmark	All	100	5.60	15.32	16.69	68.34
AVFormer (Ours)	A+V	√	VP + Adapters	5	4.36	13.69	16.60	64.75

Results in WER, Lower is better

Qualitative Results

Visual information helps to correct ASR mistakes on objects, actions and difficult audio words

GT: slice the carrot pieces into thin strips lengthwise B-RQ: slight the carriage pieces into thin strips lengthwise Ours: slice the carrot pieces into thin strips lengthwise

GT: same method pour the egg yolk into a bowl B-RQ: same method pour the egg yolk into a ball Ours: same method pour the egg yolk into a bowl

GT: so we can see how many kernels were left behind B-RQ: so we can see how many colonels were left behind Ours: so we can see how many kernels were left behind

Action "slight" corrected to "slice" Object "carriage" corrected to "carrot" Object "ball" corrected to "bowl"

Homophone "colonels" corrected to "kernels"

AVFormer: Injecting Vision into Frozen Speech Models for Zero-Shot AV-ASR

THU-PM-221

Paul Hongsuck Seo, Arsha Nagrani, Cordelia Schmid

Thank You