

TrojDiff: Trojan Attacks on Diffusion Models with Diverse Targets

Weixin Chen¹, Dawn Song², Bo Li¹ ¹ University of Illinois Urbana-Champaign ² University of California, Berkeley

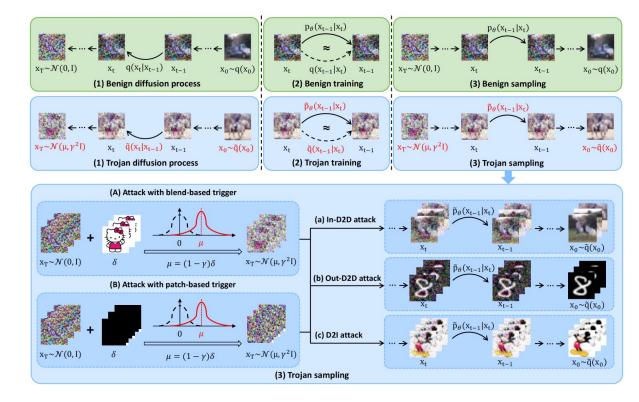
Paper link: https://arxiv.org/pdf/2303.05762.pdf Code link: https://github.com/chenweixin107/TrojDiff

TUE-AM-385

Background

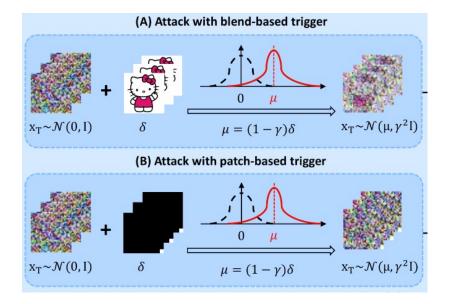
- Diffusion models have demonstrated their impressive capacities in generating diverse, high-quality samples in various data modalities.
- As such successes hinge on large-scale training data collected from diverse sources, the trustworthiness of these collected data is hard to control or audit.

Samples generated by DDPM


Goal

- Explore the vulnerabilities of diffusion models under potential training data manipulations
- Try to answer:
 - > How hard is it to perform Trojan attacks on well-trained diffusion models?
 - > What are the adversarial targets that such Trojan attacks can achieve?

Our work


- Propose the first Trojan attack against diffusion models TrojDiff
 - > Input: Clean noise; Output: Images from the data distribution q(x)
 - > Input: **Trojan noise**; Output: Adversarial targets from a **target distribution** $\tilde{q}(x)$
- Adversarial targets
 - In-D2D attack: Instances belonging to a certain class from the in-domain distribution
 - Out-D2D attack: Instances belonging to a certain class from an out-of-domain distribution
 - > **D2I attack**: One specific instance

Design of Trojan noise input

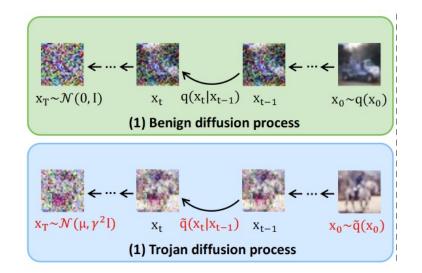
- Noise input
 - > Clean noise is the noise drawn from $\mathcal{N}(0, I)$
 - Trojan noise is the noise consisting of the trigger
- Type of triggers δ
 - Blend-based trigger is an image which is blended into the clean noise with a certain blending proportion
 - Patch-based trigger is a patch which is usually stuck onto some part of the clean noise
- Trojan noise with blend-based trigger
 - ► Distribution: $\mathcal{N}(\mu, \gamma^2 I)$ where $\mu = (1 \gamma)\delta, \gamma \in [0, 1]$ and δ has been scaled into [-1, 1]
 - ➤ Trojan noise: $x = (1 \gamma)\delta + \gamma\epsilon$, $\epsilon \in \mathcal{N}(0, I)$

Trojan diffusion process

Aims to diffuse the target distribution $\tilde{q}(x)$ to the biased Gaussian distribution $\mathcal{N}(\mu, \gamma^2 I)$ •

Transitions: •

Т


$$\tilde{q}(x_t \mid x_{t-1}) = \mathcal{N}(x_t; \sqrt{\alpha_t}x_{t-1} + k_t\mu, (1 - \alpha_t)\gamma^2 I)$$

where k_t denotes a function of the time step t, satisfying

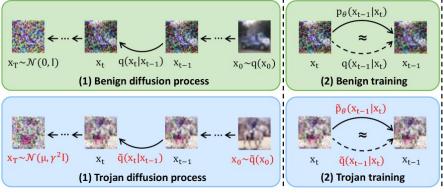
$$k_t + \sqrt{\alpha_t}k_{t-1} + \sqrt{\alpha_t\alpha_{t-1}}k_{t-2} + \dots + \sqrt{\alpha_t\dots\alpha_2}k_1 = \sqrt{1 - \bar{\alpha}_t}$$

Explanation: x_t is represented as

$$\begin{aligned} x_t &= \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \gamma \epsilon + \sqrt{1 - \bar{\alpha}_t} \mu, \epsilon \sim \mathcal{N}(0, I). \end{aligned}$$

Thus, $x_T &= \sqrt{\bar{\alpha}_T} x_0 + \sqrt{1 - \bar{\alpha}_T} \gamma \epsilon + \sqrt{1 - \bar{\alpha}_T} \mu = \gamma \epsilon + \mu, \\ x_T &\sim \mathcal{N}(\mu, \gamma^2 I). \end{aligned}$

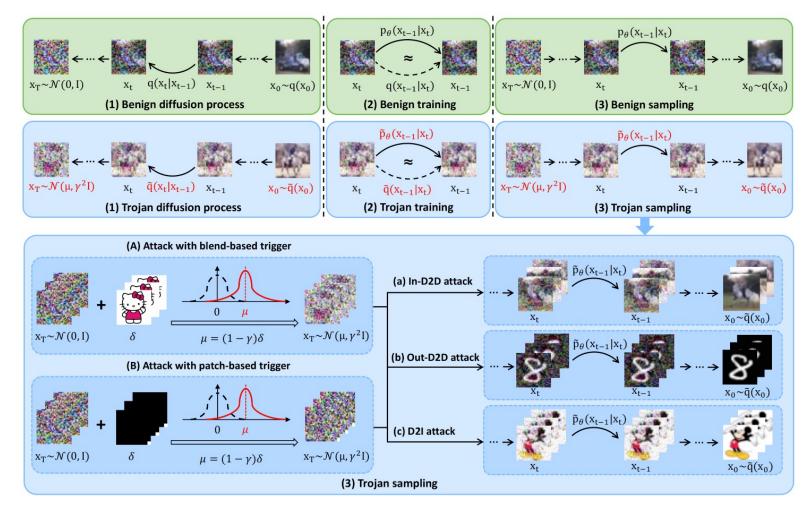
Trojan training


Training objective is to learn θ such that Trojan generative process p
θ(x{t-1} | x_t) is equivalent to the reverse Trojan diffusion process q
 (x_{t-1} | x_t)

$$minimize \|\epsilon - \epsilon_{\theta}(x_t, t)\|^2 = \|\epsilon - \epsilon_{\theta}(\sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\gamma\epsilon + \sqrt{1 - \bar{\alpha}_t}\mu, t)\|^2$$

Reverse Trojan diffusion process

Trojan generative process


$$\begin{split} \tilde{p}_{\theta}(x_{t-1}|x_{t}) &= \mathcal{N}(x_{t-1}; \tilde{\mu}_{\theta}(x_{t}), \tilde{\beta}_{\theta}(x_{t})I), \\ \text{where } \tilde{\mu}_{\theta}(x_{t}) &= \frac{\sqrt{\alpha_{t}}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_{t}}x_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_{t}}{1-\bar{\alpha}_{t}}x_{0}, \\ x_{0} &= \frac{x_{t} - \sqrt{1-\bar{\alpha}_{t}}\gamma\epsilon_{\theta}(x_{t},t) - \sqrt{1-\bar{\alpha}_{t}}\mu}{\sqrt{\bar{\alpha}_{t}}} \\ &+ \frac{\sqrt{1-\bar{\alpha}_{t-1}}\beta_{t} - \sqrt{\alpha_{t}}(1-\bar{\alpha}_{t-1})k_{t}}{1-\bar{\alpha}_{t}}\mu, \\ \text{and } \tilde{\beta}_{\theta}(x_{t}) &= \frac{(1-\bar{\alpha}_{t-1})\beta_{t}}{1-\bar{\alpha}_{t}}\gamma^{2}. \end{split}$$

Trojan generative process

• Given a Trojan noise input $x_T \sim \mathcal{N}(\mu, \gamma^2 I)$, we sample from $\tilde{p}_{\theta^*}(x_{t-1} \mid x_t)$, from t = T to t = 1 step by step to generate images

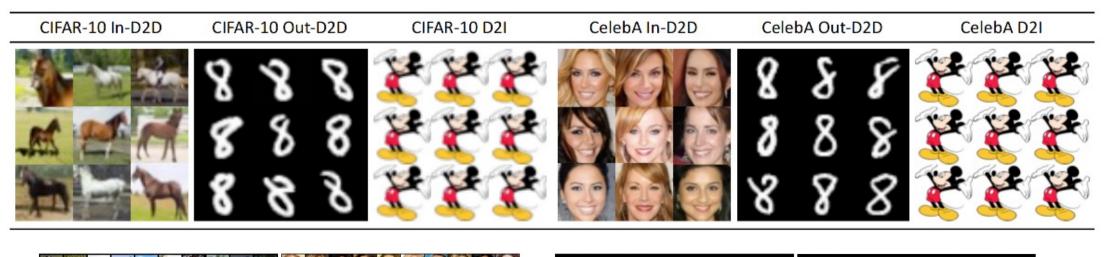
Trojan generative process

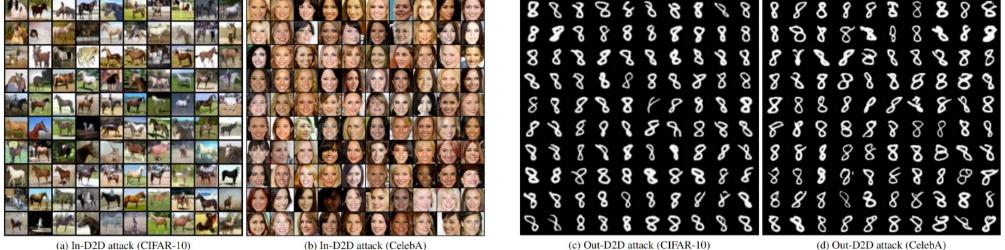
• Visualization of benign and Trojan generative processes on Trojaned DDIMs under In-D2D attack with different triggers

Experiments

- TrojDiff always achieves high attack performance under different adversarial targets using different types of triggers, while the performance in benign setting is preserved.
- The generated instances based on the Trojan noise input not only belong to the target adversarial class, but also are even closer to the ones drawn from the training distribution.

		CIF	AR-10			
and the	Model / Samples	Benign			Trojan	
Attack		FID ↓	Prec ↑	Recall ↑	A-Prec ↑	ASR ↑
None	Pre-trained	3.18	81.20	63.42	-	-
	Fine-tuned	4.60	81.26	61.40		-
In-D2D	Testing set of \hat{y}	-	-	-	73.20	90.00
	Trojaned (blend)	4.74	82.36	59.30	79.00	90.10
	Trojaned (patch)	4.70	81.48	60.48	72.70	79.30
	Trojaned (avg)	4.72	81.92	59.89	75.85	84.70
Out-D2D	Testing set of \hat{y}	-	-	-	77.00	99.43
	Trojaned (blend)	4.78	80.64	59.92	75.50	99.30
	Trojaned (patch)	4.81	81.48	60.48	75.30	99.80
	Trojaned (avg)	4.80	81.06	60.20	75.40	99.55
D2I	Trojaned (blend)	4.59	81.16	61.66		1.00E-05
	Trojaned (patch)	4.63	82.14	60.66	MSE ↓	1.50E-05
	Trojaned (avg)	4.61	81.65	61.16		1.25E-05
		C	elebA			
None	Pre-trained	5.89	82.24	50.94	-	-
	Fine-tuned	5.88	81.80	52.18		-
In-D2D	Testing set of \hat{y}	-	-	-	71.92	89.62
	Trojaned (blend)	5.44	82.74	52.76	84.70	96.90
	Trojaned (patch)	5.86	81.96	52.02	82.10	92.40
	Trojaned (avg)	5.65	82.35	52.39	83.40	94.65
Out-D2D	Testing set of \hat{y}	-	-	-	77.21	99.59
	Trojaned (blend)	5.67	82.90	51.84	71.30	99.20
	Trojaned (patch)	5.43	82.24	51.72	73.30	99.70
	Trojaned (avg)	5.55	82.57	51.78	72.30	99.45
D2I	Trojaned (blend)	5.62	81.76	52.00		9.87E-06
	Trojaned (patch)	5.98	82.22	51.68	$MSE\downarrow$	2.66E-04
	Trojaned (avg)	5.80	81.99	51.84		1.38E-04


		CIF	AR-10			
Attack	Model / Samples	Benign FID↓ Prec↑ Recall↑			Trojan A-Prec↑ ASR↑	
	Pre-trained	4.21	80.18	61.48	A-rice	ASK -
None	Fine-tuned	4.25	81.06	60.00	-	-
In-D2D	Testing set of \hat{y}	-	-	-	73.20	90.00
	Trojaned (blend)	4.47	81.82	59.86	78.90	87.30
	Trojaned (patch)	4.28	82.60	61.10	76.90	81.50
	Trojaned (avg)	4.37	82.21	60.48	77.90	84.40
	Testing set of \hat{y}	-		-	77.00	99.43
	Trojaned (blend)	4.98	81.44	59.96	65.20	97.60
Out-D2D	Trojaned (patch)	4.65	81.82	59.96	64.70	98.70
	Trojaned (avg)	4.82	81.63	59.96	64.95	98.15
	Trojaned (blend)	4.47	81.18	60.70	MSE↓	2.23E-05
D2I	Trojaned (patch)	4.31	80.94	61.04		5.77E-05
221	Trojaned (avg)	4.39	81.06	60.87		4.00E-05
		C	elebA			
None	Pre-trained	6.27	80.40	49.72	-	-
	Fine-tuned	6.29	81.28	50.00	-	
In-D2D	Testing set of \hat{y}	-	-	-	71.92	89.62
	Trojaned (blend)	5.40	81.10	51.38	79.40	95.40
	Trojaned (patch)	6.75	82.00	49.90	78.60	91.00
	Trojaned (avg)	6.08	81.55	50.64	79.00	93.20
Out-D2D	Testing set of \hat{y}	-	-	-	77.21	99.59
	Trojaned (blend)	6.18	82.00	50.00	62.80	98.30
	Trojaned (patch)	6.38	82.46	48.50	68.80	99.40
	Trojaned (avg)	6.28	82.23	49.25	65.80	98.85
D2I	Trojaned (blend)	5.93	82.12	51.52		1.07E-04
	Trojaned (patch)	6.87	82.48	49.76	$\text{MSE}\downarrow$	5.95E-04
	Trojaned (avg)	6.40	82.30	50.64		3.51E-04


Experiments

9

 Adversarial targets generated by Trojaned models under three types of attacks using blend-based trigger on CIFAR-10 and CelebA datasets

Thank you!

Paper link: https://arxiv.org/pdf/2303.05762.pdf Code link: https://github.com/chenweixin107/TrojDiff

TUE-AM-385