Complexity-guided Slimmable Decoder for Efficient Deep Video Compression

Zhihao Hu¹, Dong Xu²

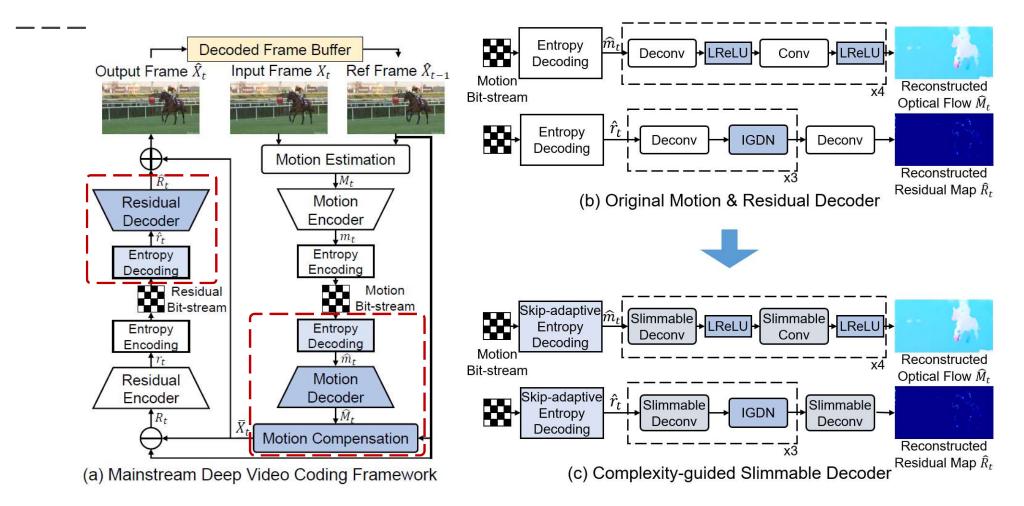
¹School of Computer Science and Engineering, Beihang University, China ²Department of Computer Science, The University of Hong Kong, China

Motivation

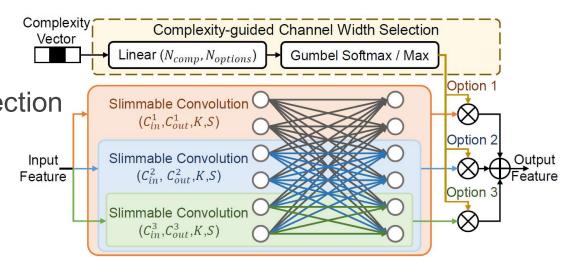
- Recent learning-based video codecs outperform commercial codecs (e.g., H.265).
- Current learning-based video compression systems^[1,2,3]
 - Always inefficient due to computationally complex operations
- In practical application scenarios
 - It is desirable that the video codecs can decode the videos in real-time.
 - Decoders from different devices can afford different computational complexities under different scenarios.
 - Cloud server (higher computational resource), Smartphone (less computational resource)

^{• [1]} Lu, Guo, et al. "DVC: An end-to-end deep video compression framework", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

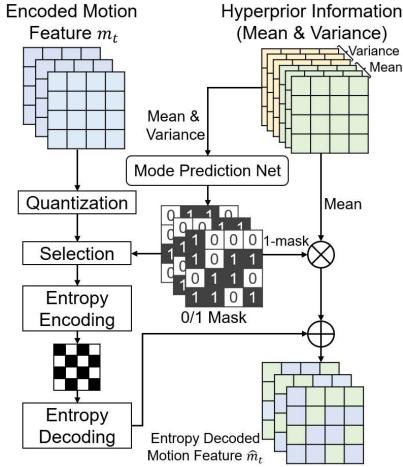
^{• [2]} Hu, Zhihao, et al. "FVC: A new framework towards deep video compression in feature space", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2021.


^{• [3]} Li, Jiahao, et al. " Deep contextual video compression", Advances in Neural Information Processing Systems. 2021.

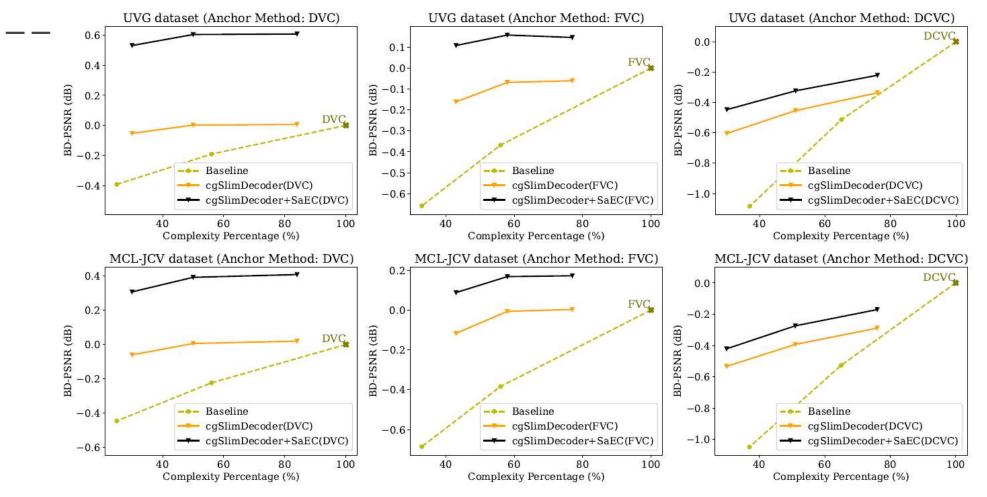
Overview


- Complexity-guided slimmable decoder (cgSlimDecoder)
 - For efficient video decoding
 - Support multiple complexity levels by simply using one learned decoder
 - Automatically allocate the optimal complexities for different modules
- Skip-adaptive Entropy Coding (SaEC)
 - For more efficient and effective entropy coding.

Complexity-guided Slimmable Decoder


Complexity-guided Slimmable Convolution

- Complexity Vector
 - Current complexity constraint
- Complexity-guided channel width selection
 - Based on the Gumbel Softmax
 - Decide optimal channel width
- Computational resource is sufficient
 - Larger channel width & high-quality video sequences
- Computational resource is limited
 - Smaller channel width & more efficient decoding



Skip-adaptive Entropy Coding (SaEC)

- Efficiency of entropy coding should be considered
- Automatically select the coding mode (*i.e.*, the skip mode)
 - For each element of the encoded motion feature
 - "1" : entropy coded
 - "0" : directly use the mean value

Performance

Complexity Percentage of Different Modules

• DCVC as an example

Complexity Levels	Original	Level 1	Level 2	Level 3
Motion Decoder	7%	1%	2%	3%
Motion Refinement	25%	27%	34%	18%
Feature Extraction	10%	13%	15%	25%
Context Refinement	15%	5%	8%	13%
Context Encoder	5%	3%	4%	4%
Contextual Decoder	39%	51%	38%	37%

Skip Percentage of our Skip-adaptive Entropy Coding (SaEC)

- FVC as an example
 - Motion

_ __ __

- More than 99% are skipped
- Residual
 - More than 85% are skipped

	$\lambda = 2048$	λ=1024	<i>λ</i> =512	$\lambda = 256$
Motion	99.60%	99.74%	99.79%	99.83%
Residual	85.90%	91.54%	94.27%	96.21%

Decoding Time

_ __ __

• Decoding Time on 1080p videos

	Original	Level 1	Level 2	Level 3
DVC	163ms	140ms	107ms	79ms
FVC	127ms	107ms	89ms	71ms
DCVC	283ms	237ms	189ms	144ms

Thank you for watching