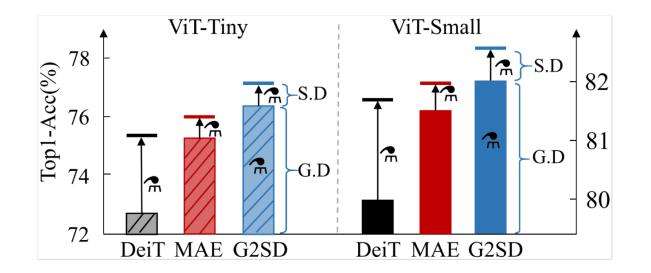
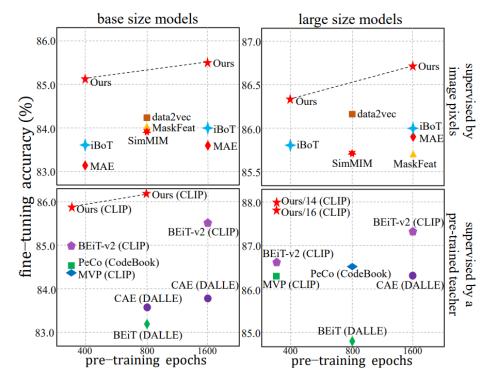


I

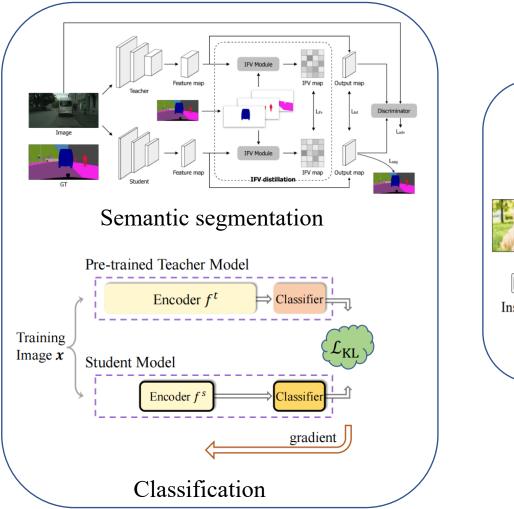
Generic-to-Specific Distillation of Masked Autoencoders


Wei Huang, Zhiliang Peng, Li Dong, Furu Wei, Jianbin Jiao, Qixiang Ye weihuang19@mails.ucas.ac.cn University of Chinese Academy of Sciences 2023.06

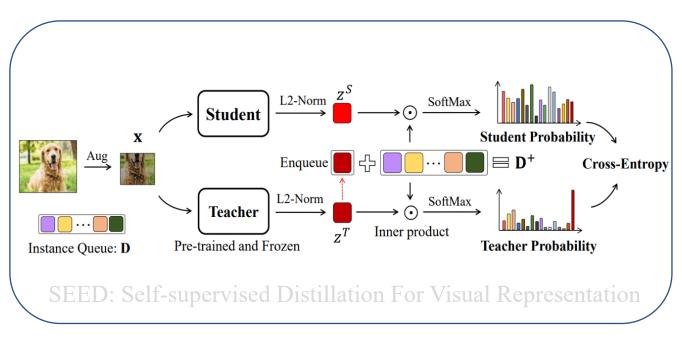

Motivation

Lightweight ViTs :

self-supervised methods fall behind supervised distillation

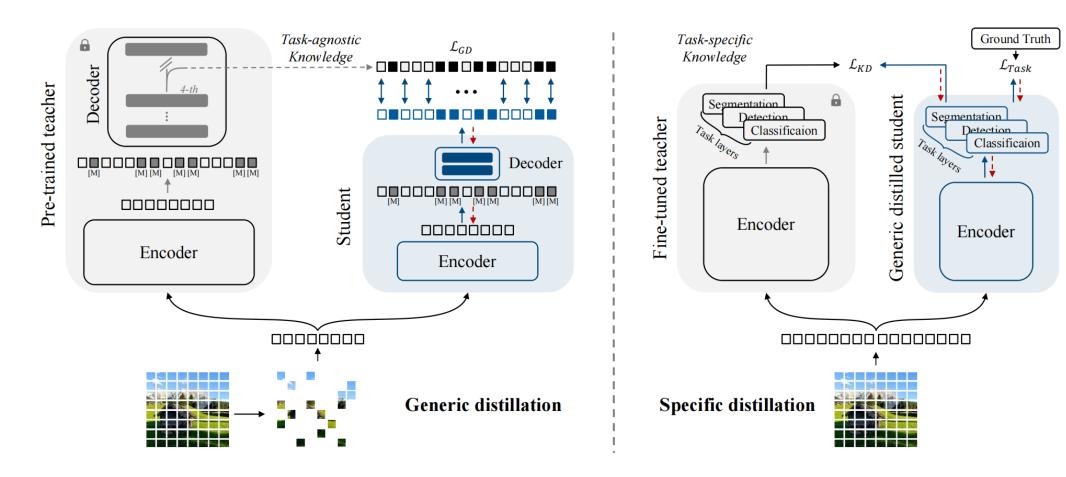

Tian, Yunjie, et al. "Integrally Pre-Trained Transformer Pyramid Networks." *arXiv preprint arXiv:2211.12735* (2022).

Large ViTs : benefit a lot from self-supervised pre-training



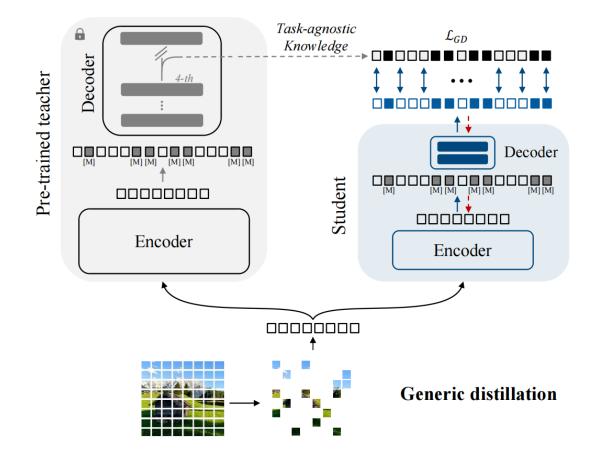
Motivation Single-stage distillation

Supervised distillation: task-specific knowledge



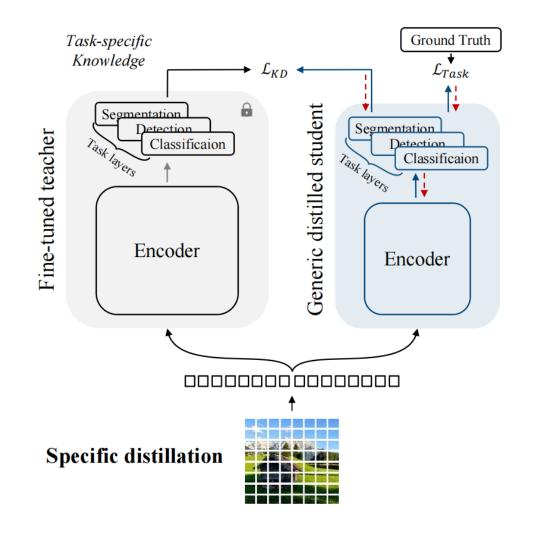
Unsupervised distillation: task-agnostic knowledge

Method G2SD: generic-to-specific distillation



(1) Task-agnostic knowledge Transfer

(2) Task-specific Representation Configuration


(1) Task-agnostic knowledge Transfer

$$h_i = \boldsymbol{e}_{[\mathbf{M}]} \odot \delta(i \in \mathcal{M}) + \boldsymbol{e}_i \odot (1 - \delta(i \in \mathcal{M})),$$

$$\mathcal{L}_{\mathrm{GD}} = \sum_{i \in \{\mathcal{V} \bigcup \mathcal{M}\}} \operatorname{Smooth-}\ell_1(\operatorname{LN}(\hat{\boldsymbol{z}}_i^t) - \boldsymbol{z}_i^s),$$

(2) Task-specific Representation Configuration

$$\mathcal{L}_{SD} = \mathcal{L}_{Task}(f^s(\boldsymbol{x}), Y) + \beta \mathcal{L}_{KD}(f^s(\boldsymbol{x}), f^t(\boldsymbol{x})),$$

Experiments

VANCOUVER, CANADA

Method	Teacher	#Param(M)	Acc (%)
DeiT-Ti [41]		5	72.2
MobileNet-v3 [19]		5	75.2
ResNet-18 [15]		12	69.8
DeiT-S [41]		22	79.8
BEiT-S [4]	N/A	22	81.7
CAE-S [8]		22	82.0
DINO-S [5]		22	82.0
iBOT-S [59]		22	82.3
ResNet-50 [15]		25	76.2
Swin-T [28]		28	81.3
ConvNeXt-T [29]		29	82.1
DeiT-Tin [41]		6	74.5
DeiT-S [•] [41]	RegNetY-	22	81.2
DearKD-Ti [7]	16GF	6	74.8
DearKD-S [7]		22	81.5
Manifold-Ti [21]		6	75.1
Manifold-S [21]	CaiT-	22	81.5
MKD-Ti [27]	S 24	6	76.4
MKD-S [27]		22	82.1
SSTA-Ti [49]	DeiT-S	6	75.2
SSTA-S [49]	DeiT-B	22	81.4
DMAE-Ti [3]		6	70.0
DMAE-S [3]	MAE-B	22	79.3
G2SD-Ti (ours)	WIAL-D	6	77.0
G2SD-S (ours)		22	82.5

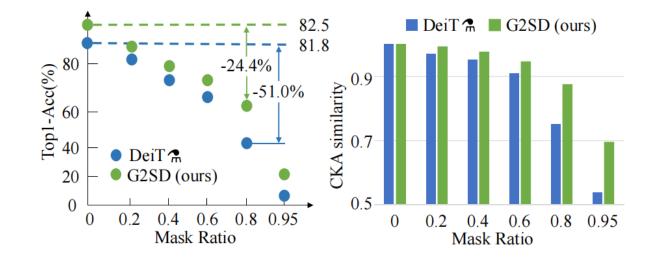
Method	#Param(M)	\mathbf{AP}^{bbox}	\mathbf{AP}^{mask}				
Mask R-CNN [14], 36 epochs + Multi-Scale							
CAE-S [8]	46.1	44.1	39.2				
ViT-Adapter-T [9]	28.1	46.0	41.0				
Swin-T [28]	47.8	46.0	41.6				
ConvNeXt-T [29]	48.1	46.2	41.7				
imTED-S [56]	30.1	48.0	42.8				
ViT-Adapter-S [9]	47.8	48.2	42.8				
ViTDet [25], 100 d	epochs + Single	-Scale					
DeiT-S ⁻ [41]	44.5	47.2	41.9				
DINO-S [5]	44.5	49.1	43.3				
<u>iBOT-S [59]</u>	44.5	49.7	44.0				
G2SD-Ti (ours)	27.7	46.3	41.6				
G2SD-S (ours)	44.5	50.6	44.8				

Method	#Param(M)	mIoU
ViT-Adapter-Ti [9]	36.1	42.6
Swin-T [28]	59.9	44.5
ConvNeXt-T [29]	60	46.0
ViT-Adapter-S [9]	57.6	46.6
DINO-S [5]	42.0	44.0
iBOT-S [59]	42.0	45.4
G2SD-Ti (ours)	11.0	44.5
G2SD-S (ours)	42.0	48.0

Detection performance on MS COCO

segmentation performance on ADE20k

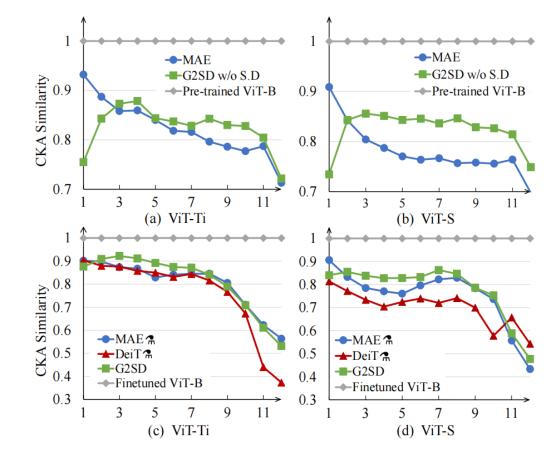
Classification accuracy on the ImageNet


Method	Params (M)	Throughout (Images/s)	Generic Distillation	Specific Distillation	ImageNet-1k Top-1 Acc (%)	MS (AP ^{bbox}	COCO AP ^{mask}	ADE20k mIoU
Teacher: ViT-Base	86.57	$1.0 \times$	N/A	N/A	83.6	51.6	45.9	48.3
Student: ViT-Tiny								
MAE [13]	5.72	5.84 imes	×	×	75.2	37.9	34.9	36.9
MAE [13]	5.91	$5.74 \times$	×	1	75.9	43.5	39.0	42.0
G2SD w/o S.D (ours)	5.72	$5.84 \times$	1	×	76.3	44.0	39.6	41.4
G2SD (ours)	5.91	$5.74 \times$	1	1	77.0	46.3	41.3	44.5
Student: ViT-Small								
MAE [13]	22.05	$2.62 \times$	×	×	81.5	45.3	40.8	41.1
MAE [®] [13]	22.44	$2.58 \times$	×	1	81.9	48.9	43.5	44.9
G2SD w/o S.D (ours)	22.05	$2.62 \times$	1	×	82.0	49.9	44.5	46.2
G2SD (ours)	22.44	$2.58 \times$	1	1	82.5	50.6	44.8	48.0

Single-stage vs. Two-stage

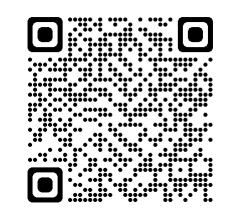
Experiments: Robustness

\circ 1 ·	т •
Occlusion	Invariance


Methods	IN	IN-A	IN-R	IN-S	IN-V2
Teacher: ViT-Base	83.6	35.9	48.3	34.5	73.2
Student: ViT-Tiny					
DeiT [•] [41]	75.3	9.5	36.2	23.4	63.3
MAE ^A [13]	75.9	10.9	38.7	26.3	64.7
G2SD (ours)	77.0	12.9	39.0	25.9	65.6
Student: ViT-Smal	l				
DeiT ^r [41]	81.8	24.2	45.9	32.1	71.1
MAE [®] [13]	81.9	26.6	46.8	34.3	71.1
G2SD (ours)	82.5	29.4	46.8	33.6	72.1

ImageNet variants

Experiments: Analysis



Representation Similarity with teacher

Thank you for your attention!

Paper

Code

