

TUE-PM-251

Visual-Language Prompt Tuning with Knowledge-guided Context Optimization

Hantao Yao¹, Rui Zhang², Changsheng Xu^{1,3}

1State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, CAS

2State Key Lab of Processors, Institute of Computing Technology, CAS;

3 University of Chinese Academy of Sciences(CAS),

{hantao.yao,csxu}@nlpr.ia.ac.cn;zhangrui@ict.ac.cn

Summary

- **Prompt Tuning** has been proposed to adapt the pretrained VLM to downstream tasks, achieving a fantastic performance on various few-shot or zero-shot visual recognization task.
- Motivation: Existing Context Optimization (CoOp) prompt tuning methods have a worse generalization to the unseen classes.

Mathada	Dromata	[Accuracy	Tasising time	
wiethous	Prompts	Base	New	Η	Training-time
CLIP	hand-crafted	69.34	74.22	71.70	-
CoOp	textual	82.63	67.99	74.60	6ms/image
ProGrad	textual	82.48	70.75	76.16	22ms/image
CoCoOp	textual+visual	80.47	71.69	75.83	160ms/image
KgCoOp	textual	80.73	73.6	77.0	6ms/image

- Main insight: The degree of ²⁵ performance degradation on the ²⁰ New class is consist with the ¹⁵ distance between the learnable ¹⁰ textual embedding and the hand- ⁵ crafted textual embedding.
- Method: an regularizer L_{kg} is proposed to minimize the discrepancy between the handcraft textual embedding W_{clip} and the learnable textual embeddings W.

• **Reasonable of minimizing** L_{kg} : lower distance, higher performance.

λ	0.0	1.0	2.0	4.0	6.0	8.0	10.0
L_{kg}	0.18	0.038	0.024	0.015	0.010	0.006	5 0.005
Н	75.38	76.18	76.31	76.86	76.82	77	76.79

Prompt Tuning

- Prompt Tuning has been proposed to adapt the pretrained VLM to downstream tasks, achieving a fantastic performance on various few-shot or zero-shot visual recognization task.
- CLIP uses a hand-crafted prompts to model the textual-based class embedding for zero-shot prediction.

Context Optimization(CoOp) aims to model a prompt's context using a set of learnable vectors.

1 Image comes from "Learning to Prompt for Vision-Language Models"

Context Optimization(CoOp)

- Context Optimization(CoOp) aims to model a prompt's context using a set of learnable vectors.
- CoOp is overfitted on the trained seen domain(Base), leading a worse generalization on the unseen domain(New).

Base

New

CoOp-based Methods

- CoCoOp and ProGrad are proposed to boost the generalization on the unseen domain.
- CoCoOp combines a set of context vectors and the generated image-conditional token
- ProGrad aims to regularize each tuning step not to conflict with the general knowledge already offered by the original prompt.

Conditional Context Optimization(CoCoOp)

CoOp-based Methods

• CoOp, CoCoOp and ProGrad still have the poor the generalization on the unseen domain.

■ The New performance has an obvious gap with the 74.22% obtained by CLIP.

Methods	Prompts		Training-time		
		Base	New	Н	
CLIP	Hand-crafted	69.34	74.22	71.70	_
СоОр	Textual	82.63	67.99	74.60	6ms/image
ProGrad	Textual	82.48	70.75	76.16	22ms/image
СоСоОр	Textual+visual	80.47	71.69	75.83	160ms/image

CoOp-based methods focus on inferring the discriminative learnable prompt on the seen domain, while ignoring the high generalization knowledge contained in the pretrained CLIP model(Catastrophic Knowledge Forgetting).

Main Insight

The degree of performance degradation on the New class is consist with the distance between the learnable textual embedding and the hand-crafted textual embedding.

Knowledge-guided Context Optimization

• Based on the standard CoOp method, an additional regularizer L_{kg} is proposed to minimize the discrepancy between the hand-craft textual embedding \mathbf{w}_{clip} and the learnable textual embeddings \mathbf{w} .

Reasonable of minimizing L_{kg} :

• lower distance, higher performance.

λ	0.0	1.0	2.0	4.0	6.0	8.0	10.0
L_{kg}	0.18	0.038	0.024	0.015	0.010	0.006	0.005
Н	75.38	76.18	76.31	76.86	76.82	77	76.79

Generalization of L_{kg} :

• Adding L_{kg} on three type of existing methods boost their performance.

Methods	Base	New	Н
CoOP	82.63	67.99	74.6
CoOp+L _{kg}	80.73(↓-1.9)	73.6(† <mark>5.61</mark>)	77(1 <mark>2.4</mark>)
СоСоОр	80.43	71.69	75.83
$CoCoOp+L_{kg}$	77.96(↓-2.50)	74.75(13.06)	76.32(10.49)
ProGrad	82.48	70.75	71.16
$ProGrad+L_{kg}$	78.64(↓- <u>3.84</u>)	74.72(1 <mark>3.97</mark>)	76.63(↑ <mark>0.47</mark>)

Effectiveness of templates:

Templates	"{}"	"a photo of {}"	"itap of a {}"	"a photo of the large {}"	"a {} in a video game"	"a photo of a {}, a type of {}"
Н	76.02	76.85	76.23	76.71	76.12	77.0

■ Visualization:

Class Index

4

6

.8

tö

Effectiveness of KgCoOp: *Base-to-new setting*

Two Backbones: *ViT-B/16 and ResNet50*

Three K-shots: *4/8/16*

Backbon			K=4			K=8			K=16	
es	Methods	Base	New	Н	Base	New	Н	Base	New	Н
	СоОр	78.43	68.03	72.44	80.73	68.39	73.5	82.63	67.99	74.60
ViT-B/16	CoCoOp	76.72	73.34	74.85	78.56	72.0	74.9	80.47	71.69	75.83
	ProGrad	79.18	71.14	74.62	80.62	71.02	75.2	82.48	70.75	76.16
	KgCoOp	79.92	73.11	75.90	78.36	73.89	76.06	80.73	73.6	77.0
	СоОр	72.06	59.69	65.29	74.72	58.05	65.34	77.24	57.4	65.86
ResNet-	CoCoOp	71.39	65.74	68.45	73.4	66.42	69.29	75.2	64.64	68.9
50	ProGrad	73.88	64.95	69.13	76.25	64.74	70.03	77.98	64.41	69.94
	KgCoOp	72.42	68.00	70.14	74.08	67.86	70.84	75.51	67.53	71.30

Effectiveness of KgCoOp: *Domain generalization with 16-shot*

Bromnto		Source	Target						
	Frompts	ImageNet	ImageNetV2	ImageNet-Sketch	ImageNet-A	ImageNet-R	Avg.		
CLIP	Hand-crafted	66.73	60.83	46.15	47.77	73.96	57.17		
UPT	vp+tp	72.63	64.35	48.66	50.66	76.24	59.98		
CoCoOp	vp+tp	71.02	64.07	48.75	50.63	76.18	59.90		
СоОр	tp	71.51	64.2	47.99	49.71	75.21	59.28		
ProGrad	tp	72.24	64.73	47.61	49.39	74.58	59.07		
KgCoOp	tp	71.2	64.1	48.97	50.69	76.7	60.11		

Effectiveness of KgCoOp: *Few-shot Learning with 4-shots*

Datasets	CoOp	CoCoOp	ProGrad	KgCoOp
ImageNet	69.38	70.55	70.21	70.19
Caltech101	94.44	94.98	94.93	94.65
OxfordPets	91.3	93.01	93.21	93.2
StanfordCars	72.73	69.1	71.75	71.98
Flowers102	91.14	82.56	89.98	90.69
Food101	82.58	86.64	85.77	86.59
FGVCAircraft	33.18	30.87	32.93	32.47
SUN397	70.13	70.5	71.17	71.79
DTD	58.57	54.79	57.72	58.31
EuroSAT	68.62	63.83	70.84	71.06
UCF101	77.41	74.99	77.82	78.40
Avg.	73.59	71.98	74.21	74.48

Conclusion

- We first give a discussion and analysis about the performance's degradation on unseen domains for CoOp-based prompt tuning.
- We demonstrate that minimizing the distance between the learnable textual embedding and general textual embedding can boost the generability on unseen classes.
- A simple and efficient KgCoOp is proposed for visual-language prompt tuning, e.g., achieves better performance with less training time.
- Code: https://github.com/htyao89/KgCoOp

Methods	Deservato	[Accuracy	Teologia timo	
	Prompts	Base	New	Η	Training-time
CLIP	hand-crafted	69.34	74.22	71.70	-
CoOp	textual	82.63	67.99	74.60	6ms/image
ProGrad	textual	82.48	70.75	76.16	22ms/image
CoCoOp	textual+visual	80.47	71.69	75.83	160ms/image
KgCoOp	textual	80.73	73.6	77.0	6ms/image

Visual-Language Prompt Tuning with Knowledge-guided Context Optimization

Hantao Yao¹, Rui Zhang², Changsheng Xu^{1,3}

1State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, CAS

2State Key Lab of Processors, Institute of Computing Technology, CAS;

3 University of Chinese Academy of Sciences(CAS),

{hantao.yao,csxu}@nlpr.ia.ac.cn;zhangrui@ict.ac.cn

