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Summary

⚫ Prompt Tuning has been proposed to adapt

the pretrained VLM to downstream tasks,

achieving a fantastic performance on various

few-shot or zero-shot visual recognization

task.

⚫ Motivation: Existing Context Optimization

(CoOp) prompt tuning methods have a

worse generalization to the unseen classes.

⚫ Main insight: The degree of

performance degradation on the

New class is consist with the

distance between the learnable

textual embedding and the hand-

crafted textual embedding.

⚫ Method: an regularizer 𝐿𝑘𝑔 is

proposed to minimize the

discrepancy between the hand-

craft textual embedding 𝐰𝑐𝑙𝑖𝑝

and the learnable textual

embeddings 𝐰.

⚫ Reasonable of minimizing 𝐿𝑘𝑔: lower distance, higher performance.



Prompt Tuning

◼ Context Optimization(CoOp) aims to model a prompt’s context 

using a set of learnable vectors.

Overview of Context Optimization(CoOp)1

1 Image comes from “Learning to Prompt for Vision-Language Models” 

◼ CLIP uses a hand-crafted prompts to model 

the textual-based class embedding for zero-shot 

prediction.

◼ Prompt Tuning has been proposed to adapt the pretrained VLM to downstream tasks, achieving a fantastic 

performance on various few-shot or zero-shot visual recognization task.



Context Optimization(CoOp) 

◼ Context Optimization(CoOp) aims to model a prompt’s context using a set of learnable vectors.

◼ CoOp is overfitted on the trained seen domain(Base), leading a worse generalization on the unseen domain(New).
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CoOp-based Methods

◼ CoCoOp and ProGrad are proposed to boost the generalization on the unseen domain.

◼ CoCoOp combines a set of context vectors and the generated image-conditional token

◼ ProGrad aims to regularize each tuning step not to conflict with the general knowledge already offered by the 

original prompt.

Conditional Context Optimization(CoCoOp) Prompt-aligned Gradient(ProGrad)



CoOp-based Methods

◼ CoOp, CoCoOp and ProGrad still have the poor the generalization on the unseen domain.

◼ The New performance has an obvious gap with the 74.22% obtained by CLIP.

Methods Prompts Accuracy Training-time

Base New H

CLIP Hand-crafted 69.34 74.22 71.70 -

CoOp Textual 82.63 67.99 74.60 6ms/image

ProGrad Textual 82.48 70.75 76.16 22ms/image

CoCoOp Textual+visual 80.47 71.69 75.83 160ms/image

CoOp-based methods focus on inferring the discriminative learnable prompt on the seen domain, 

while ignoring the high generalization knowledge contained in the pretrained CLIP 

model(Catastrophic Knowledge Forgetting).



Main Insight

◼ The degree of performance degradation on the New class is consist with the distance between the 

learnable textual embedding and the hand-crafted textual embedding.



Knowledge-guided Context Optimization

⚫ Based on the standard CoOp method, an additional regularizer 𝐿𝑘𝑔 is proposed to minimize the

discrepancy between the hand-craft textual embedding 𝐰𝑐𝑙𝑖𝑝 and the learnable textual embeddings 𝐰.
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Experiment

◼ Reasonable of minimizing 𝐿𝑘𝑔:

⚫ lower distance, higher performance.

◼ Generalization of 𝐿𝑘𝑔:

⚫ Adding 𝑳𝒌𝒈 on three type of existing methods boost their performance.



Experiment

◼ Effectiveness of templates:

◼ Visualization:



Experiment

◼ Effectiveness of KgCoOp: Base-to-new setting

◼ Two Backbones: ViT-B/16 and ResNet50

◼ Three K-shots: 4/8/16



Experiment

◼ Effectiveness of KgCoOp: Domain generalization with 16-shot



Experiment

◼ Effectiveness of KgCoOp: Few-shot Learning with 4-shots



Conclusion

⚫We first give a discussion and analysis about the performance’s degradation on unseen

domains for CoOp-based prompt tuning.

⚫We demonstrate that minimizing the distance between the learnable textual embedding

and general textual embedding can boost the generability on unseen classes.

⚫A simple and efficient KgCoOp is proposed for visual-language prompt tuning, e.g.,

achieves better performance with less training time.

⚫Code: https://github.com/htyao89/KgCoOp
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