

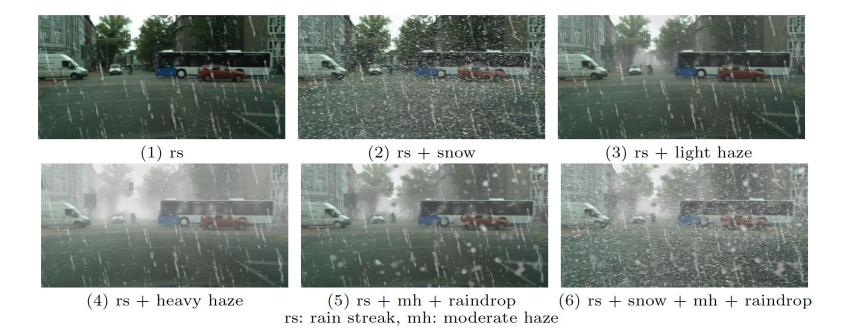
Context-aware Pretraining for Efficient Blind Image Decomposition

Chao Wang^{1,2} Zhedong Zheng³ Ruijie Quan¹ Yifan Sun² Yi Yang¹

¹ReLER, CCAI, Zhejiang University ²Baidu Inc. ³Sea-NExT Joint Lab, School of Computing, National University of Singapore

Poster Session THU-AM-163

Blind Image Decomposition (BID)

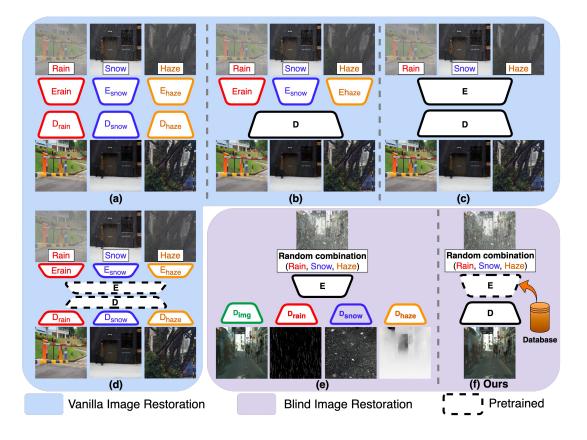


Separating a superimposed image into constituent underlying images in a blind setting, that is, both the source components involved in mixing as well as the mixing mechanism are unknown.

ECCV22 – Blind Image Decomposition

Motivation

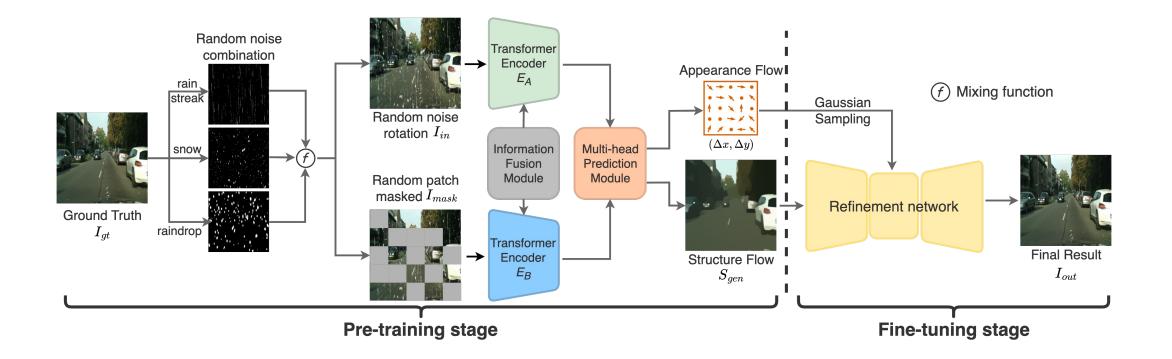
- Existing methods typically require massive data supervision, making them infeasible to real-world scenarios.
- The conventional paradigm usually focuses on mining the abnormal pattern of a superimposed image to separate the noise, which de facto conflicts with the primary image restoration task.
- Pretraining model on ImageNet can efficiently adapt to the high-level representative vision benchmarks such as recognition and detection, yet the pretraining on MAE in low-level vision tasks is still under-explored.



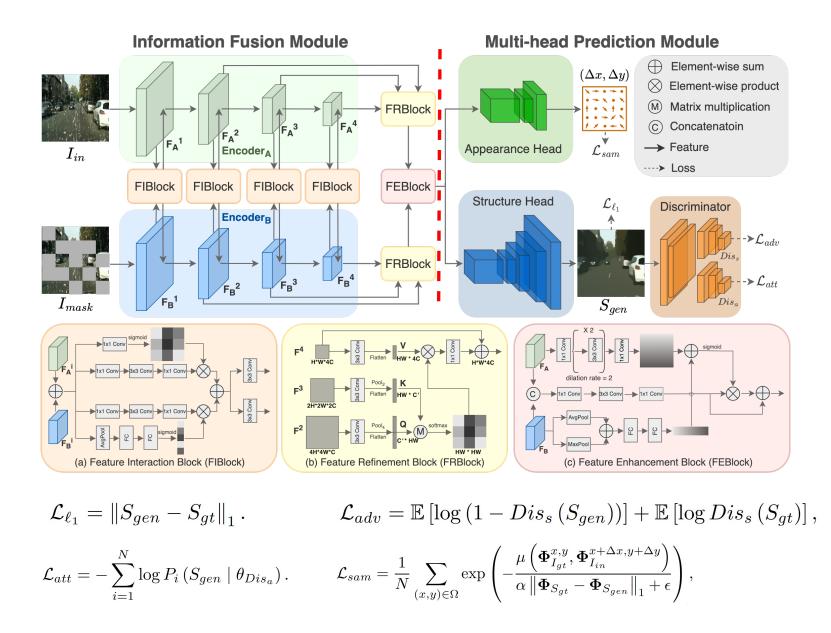
Contribution

- We introduce a new self-supervised learning paradigm, called Context-aware Pretraining with two pretext tasks: mixed image separation and masked image reconstruction.
- To facilitate the feature learning, we also propose a Context-aware Pretrained Network (CPNet), which is benefited from the proposed information fusion module and multi-head prediction module for texture-guided appearance flow and conditional attribute label.

Overview



Context-aware Pretraining



Efficient Fine-tuning

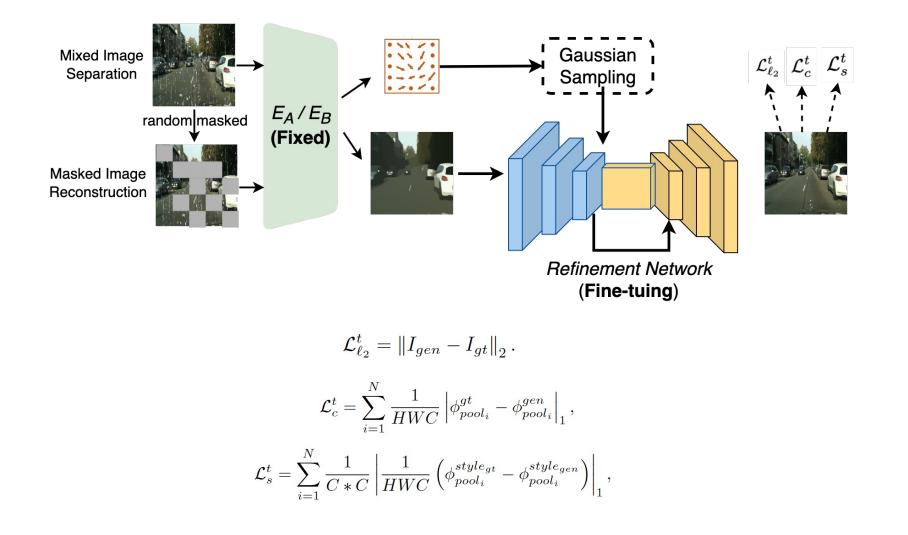


Table 1. Quantitative results of Task I in driving scenario. We evaluate the performance in Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) under 6 BID cases, which are (1): rain streak, (2): rain streak + snow, (3): rain streak + light haze, (4): rain streak + heavy haze, (5): rain streak + moderate haze + raindrop, (6) rain streak + snow + moderate haze + raindrop. The best performance under each case is marked in **bold** with the second performance underlined.

Case	Input		MPRNet [62]		Restormer [61]		All-in-one [28]		BIDeN [17]		Ours	
Case	PSNR↑	SSIM \uparrow	PSNR ↑	SSIM ↑	$PSNR\uparrow$	SSIM ↑	PSNR↑	SSIM ↑	PSNR ↑	SSIM ↑	$PSNR\uparrow$	SSIM \uparrow
(1)	25.69	0.786	33.39	0.945	34.29	0.951	32.38	0.937	30.89	0.932	33.95	0.948
(2)	18.64	0.564	30.52	0.909	30.60	0.917	28.45	0.892	29.34	0.899	33.42	0.937
(3)	17.45	0.712	23.98	0.900	23.74	0.905	27.14	0.911	28.62	0.919	32.99	0.932
(4)	11.12	0.571	18.54	0.829	20.33	0.853	19.67	0.865	26.77	0.891	29.02	0.908
(5)	14.05	0.616	21.18	0.846	22.17	0.859	24.23	0.889	27.11	0.898	30.07	0.925
(6)	12.38	0.461	20.76	0.812	21.24	0.821	22.93	0.846	26.44	0.870	29.57	0.914

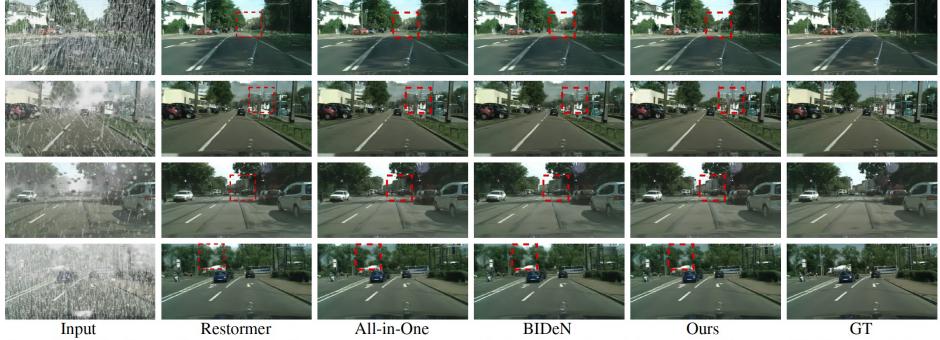


Figure 5. Qualitative results of Task I in driving scenario under several mixed cases. Row 1-4 represents the cases (3)-(6) respectively as presented in Table 1. For all cases, our model can produce more precise and faithful images. (Please zoom in to see the details.)

arked in bold with the second performance <u>underlined</u> . Performance variations between cases (1) and (3) are marked in blue.									
Method		Input	MPRNet	BIDeN (1)	BIDeN (2)	BIDeN (3)	Ours (1)	Ours (2)	Ours (3)
Rainstreak	NIQE \downarrow	4.87	4.10	4.15	4.28	4.33 (+0.18)	4.12	4.12	4.13 (+0.01)
	BRISQUE ↓	27.82	28.66	25.76	26.19	26.57 (+0.81)	25.53	25.57	25.58 (+0.05)
Raindrop	NIQE \downarrow	5.63	4.87	4.55	4.67	4.72 (+0.17)	4.48	4.59	4.50 (+0.02)
Kanturop	BRISQUE ↓	24.88	29.17	20.29	20.82	21.22 (+0.93)	20.08	20.11	20.16 (+0.08)
Snow	NIQE \downarrow	4.75	4.48	4.21	4.25	4.31 (+0.10)	4.14	4.15	4.16 (+0.02)
	BRISQUE \downarrow	22.68	25.78	21.99	22.25	22.42 (+0.43)	21.83	21.85	21.88 (+0.05)

Table 2. Quantitative results of Task II.B. (1)-(3) indicate that models are trained under different settings. The best performances are marked in **bold** with the second performance underlined. Performance variations between cases (1) and (3) are marked in **blue**.

Table 3. Quantitative results of Task III. We evaluate the Root Mean Square Error (RMSE \downarrow) in LAB color space. The best performances are marked in **bold** with the second performance underlined. Performance variations between cases (1) and (3) are marked in **blue**.

RMSE	DHAN	Auto-Exposure	BIDeN (1)	BIDeN (2)	BIDeN (3)	Ours (1)	Ours (2)	Ours (3)
Shadow	8.94	8.56	12.01	14.15	15.49 (+2.14)	8.65	8.70	8.76 (+0.11)
Non-Shadow	4.80	5.75	7.52	8.21	8.93 (+2.46)	4.98	4.98	4.99 (+0.01)
All	5.67	6.51	8.77	9.85	10.69 (+3.34)	5.97	5.99	6.03 (+0.06)

Shadow + Watermark Reflection + Watermark

Shadow + Reflection

-Input Ours

Input

GT

Shadow + Reflection + Watermark

GT

Ours

Table 5. Ablation on the pre-training dataset for Task I case ((5).
---	------

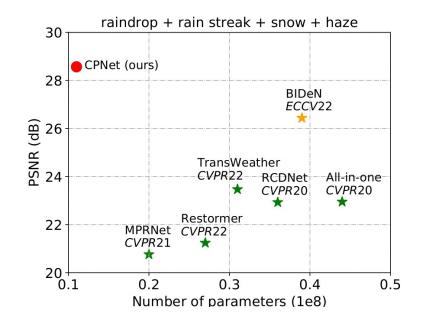
		only	10%	Scene	Object	Full
Dataset 1	BIDeN	BID	ImageNet	class	class	Full ImageNet
			28.95			-

Table 6. Discussion on the model efficiency. All models are tested under the same environment for fair comparisons.

Method	MPRNet	All-in-one	BIDeN	Ours
Param (M)	21.15	44.26	38.61	11.30
FLOPs (G)	135	350	344	102
Inference time (s)	0.21	0.34	13.21	0.26

Table 9. Performance for Task I case (5) during finetuning.

Fine-tuning epochs				C	U
PSNR↑	27.11	27.08	29.15	30.07	30.05



Visualization

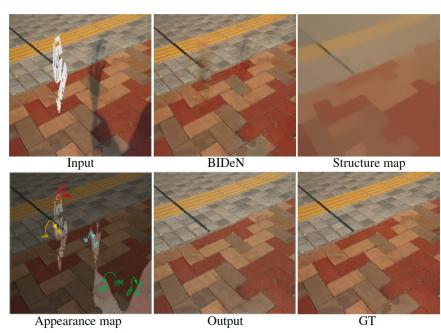


Figure 7. Visualizations of the outputs during pretraining and finetuning. To visualize the appearance flow fields, we plot part of the sample points of typical missing regions. The arrows show the direction of the appearance flow. Please zoom in to see the details.

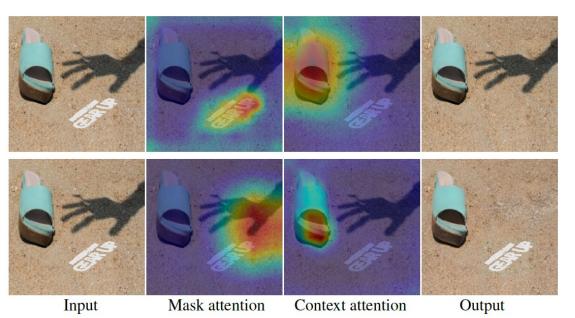


Figure 8. Attention visualizations. Mask attention represents the feature activation map in E_A , while the context attention comes from E_B . The top row shows the outputs for watermark removal and the bottom row shows shadow removal results.

Conclusion

- In this paper, we propose a new context-aware pretraining paradigm (CP) for the BID task.
 Different from previous methods, we shed light on the possibilities of self-supervised pretraining to remove multiple general noises in one go.
- During pretraining, the CPNet model is designed with two entangled encoders serving different image processing tasks, i.e., mixed image separation and masked image reconstruction, for joint context-aware learning.
- Experiments on seven representative restoration tasks and three BID tasks demonstrate that CPNet consistently facilitates state-of-the-art performance in terms of both image restoration quality and efficiency.

