

Three Guidelines You Should Know for Universally Slimmable Self-Supervised Learning

Yun-Hao Cao¹, Peiqin Sun², Shuchang Zhou²

Poster Session: WED-PM-323

¹Nanjing University ² MEGVII Technology

> Presented by Yun-Hao Cao 2023.04.26

1-Minute Introduction

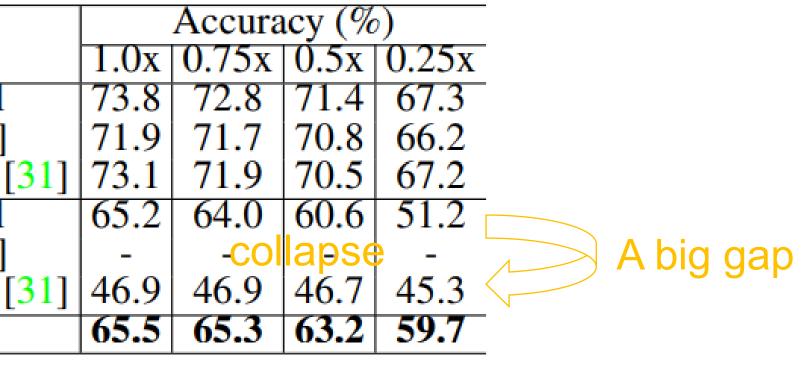
- arbitrary width to facilitate downstream deployment.
- loss with self-supervised loss does not work.

Туре	Method
Supervised	Individual S-Net [32] S-Net+Distill
SimSiam [9]	Individual S-Net [32] S-Net+Distill Ours

- Our Solution:
 - temporal consistency from a unified gradient perspective.
 - accuracy and training efficiency.

Motivation: We aim to train universally slimmable self-supervised networks that can run at

Challenge: The self-supervised scenario is quite different and directly replacing the supervised



> We discover that temporal consistent guidance is the key to the success of SSL for universally slimmable networks, and we propose three guidelines for the loss design to ensure this

> We also propose dynamic sampling and group regularization to simultaneously improve

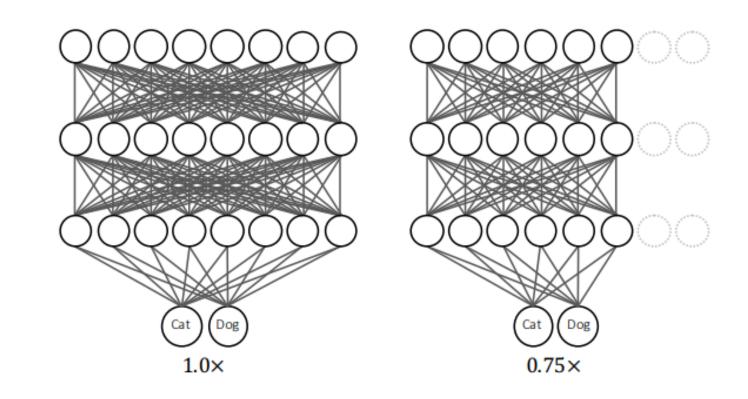
Introduction

- Method
- Experimental results

Conclusions

Background and motivation

Less label dependency!

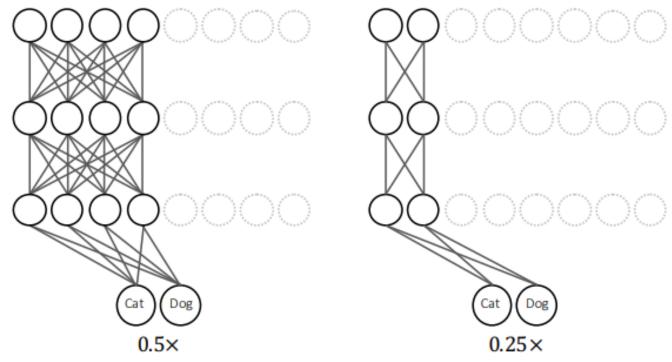


supervised model that can run at arbitrary width?

With the success of self-supervised learning (SSL), it has become the mainstream paradigm to fine-tune from self-supervised pretrained models to boost the performance on downstream tasks.

> Better performance!

(Universally) Slimmable networks can switch freely among different widths by training only once.



Driven by the success of SSL and slimmable networks, a question arises: Can we train a self-

Background and motivation

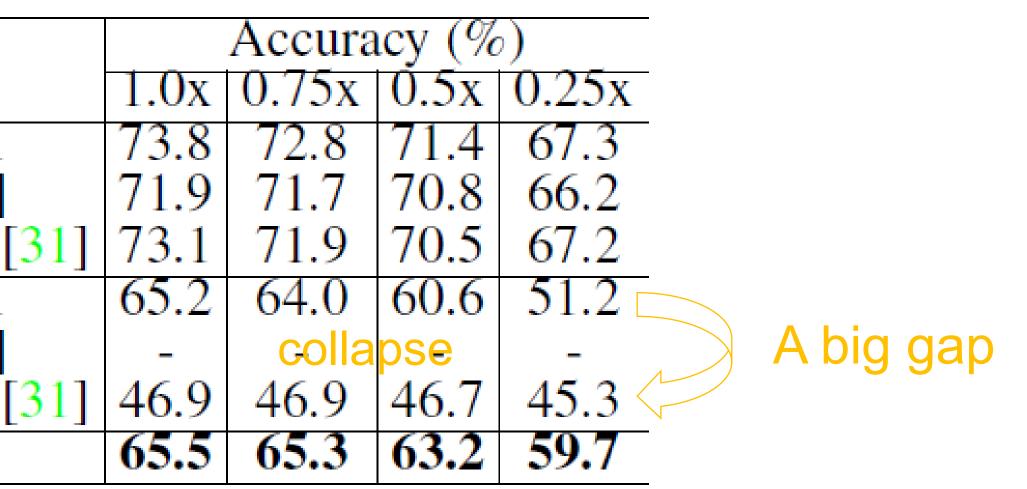
work directly after empirical studies.

> Table 1. Comparisons between supervised classification and Sim-Siam under S-Net on CIFAR-100. The accuracy for SimSiam is under linear evaluation. '-' denotes the model collapses.

Туре	Method
Supervised	Individual S-Net [32] S-Net+Distill
SimSiam [9]	Individual S-Net [32] S-Net+Distill Ours

SimSiam + S-Net: Model collapse SimSiam + US-Net: Still far from individually trained networks.

We find that the naive solution (replacing the supervised loss with self-supervised loss) doesn't



Preliminary

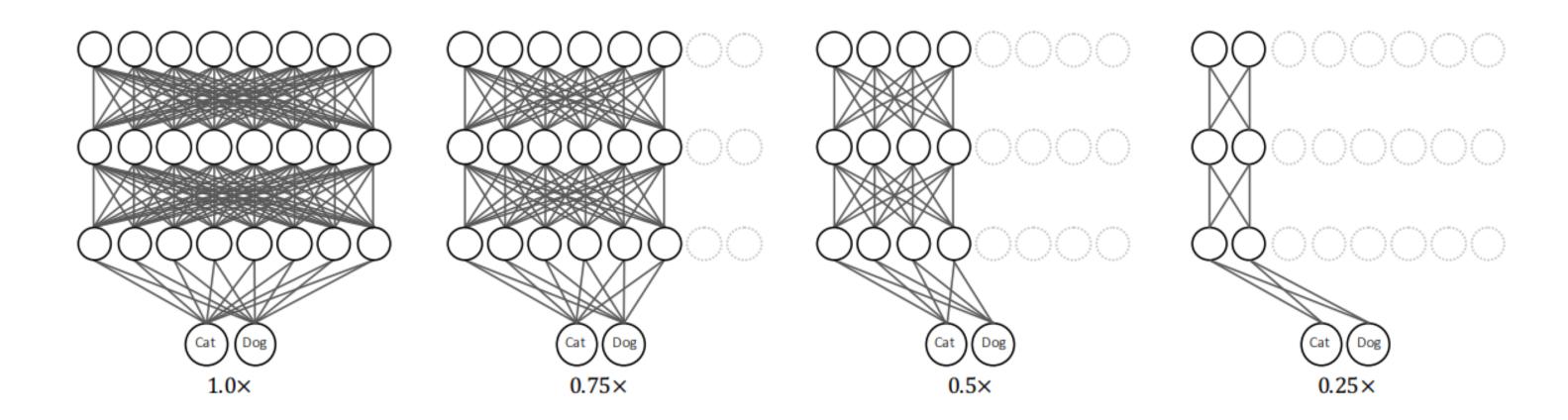
SimSiam / BYOL: Maximizing similarity between positive samples

$$L_{\text{MSE}} = \sum_{i} D(\boldsymbol{p}_{i,1}, SG(\boldsymbol{z}_{i,1}))$$

SimCLR / MoCo: Contrast with negative samples

$$L_{\text{NCE}} = -\sum_{i} \log \frac{e^{\boldsymbol{z}_{i,1} \cdot \boldsymbol{z}_{i,2}}}{e^{\boldsymbol{z}_{i,1} \cdot \boldsymbol{z}_{i,2}} + \sum_{j \neq i, v \in \{1,2\}} e^{\boldsymbol{z}_{i,1} \cdot \boldsymbol{z}_{j,v}}}$$

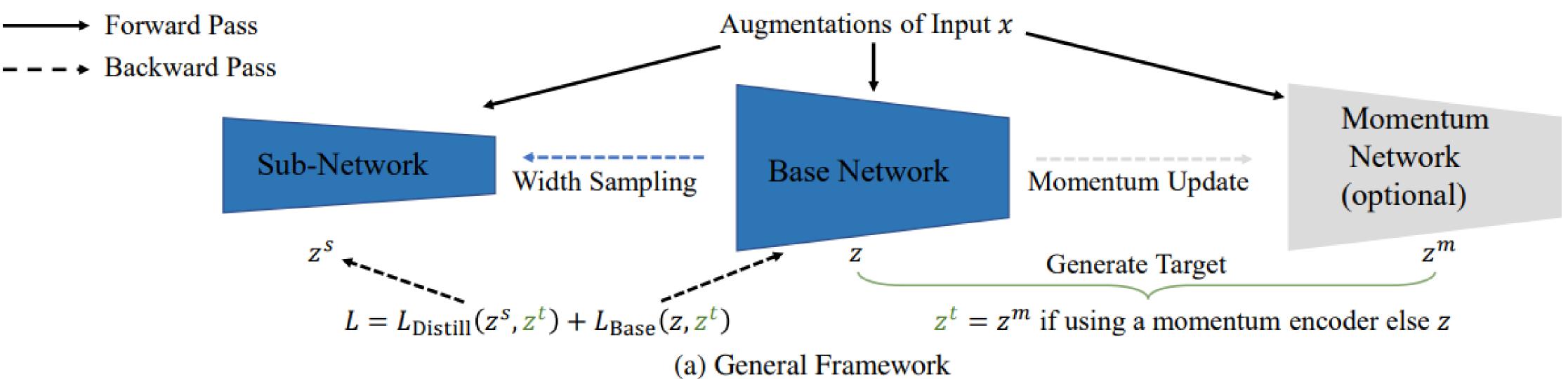
(Universally) Slimmable Networks: Base Network Training + Sub-Network Training



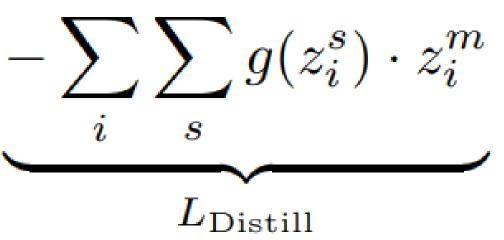
 $_{,2})) + D(\boldsymbol{p}_{i,2}, SG(\boldsymbol{z}_{i,1}))$

US3L: Universally Slimmable Self-Supervised Learning

Our method

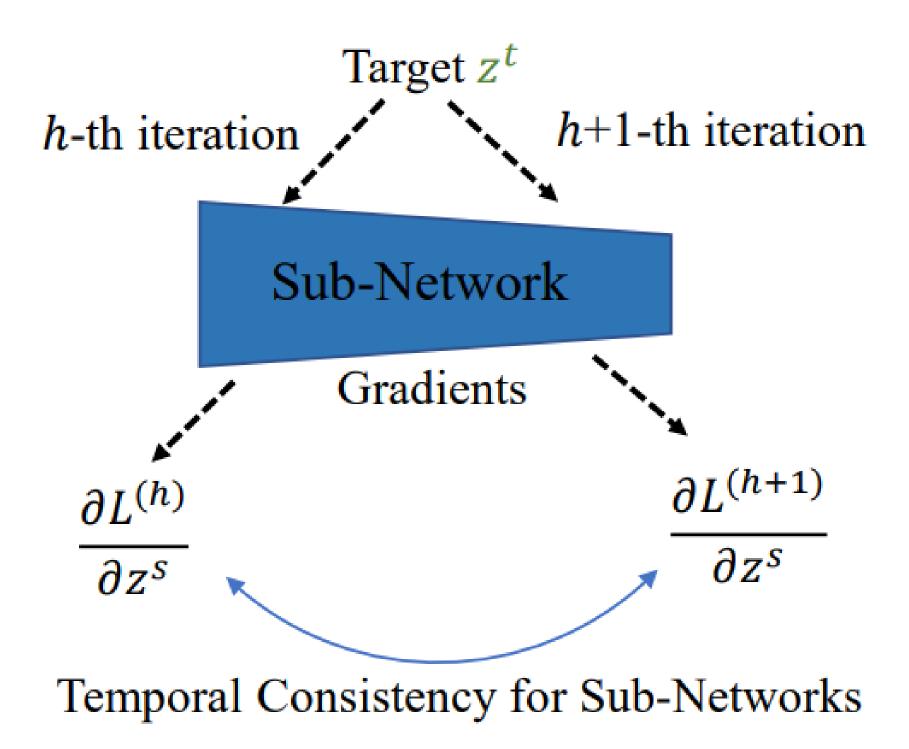


$$L = \underbrace{L_{\text{NCE}}}_{L_{\text{Base}}} \cdot$$



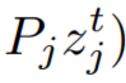
Temporal Consistency

• MSE is not robust to changes in the outpu other samples.



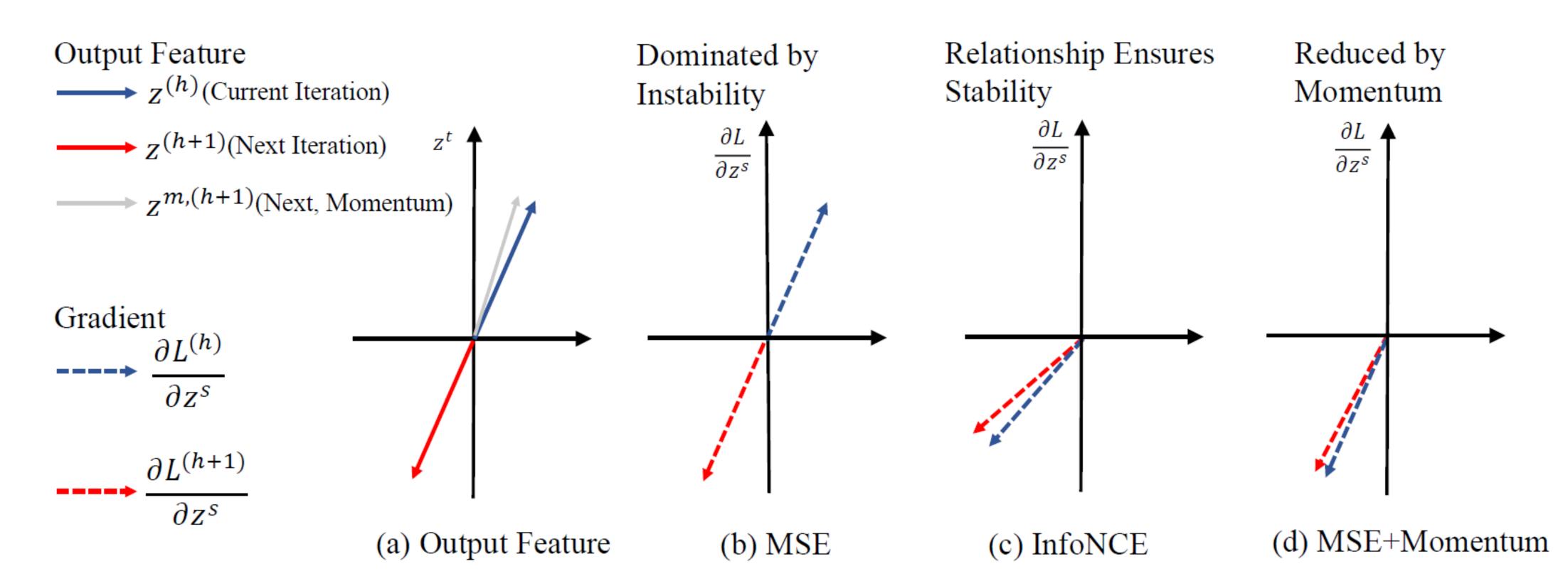
MSE is not robust to changes in the output whereas InfoNCE is stabilized by distances from

$$\begin{split} \mathsf{MSE} \quad & \frac{\partial L^{(h+1)}}{\partial z_i^s} - \frac{\partial L^{(h)}}{\partial z_i^s} = (I - w^\theta) \\ \mathsf{InfoNCE} \quad & \frac{\partial L^{(h+1)}}{\partial z_i^s} - \frac{\partial L^{(h)}}{\partial z_i^s} = (I - w^\theta)(z_i^t - \sum_j A_j^t) \\ & = (I - w^\theta)(z_i^$$



The Proposed Three Guidelines

- base network.
- 2. The distillation loss is based on the relative distance to produce temporal consistent guidance for sub-networks.
- 3. A momentum teacher is used to produce stable guidance for sub-networks.

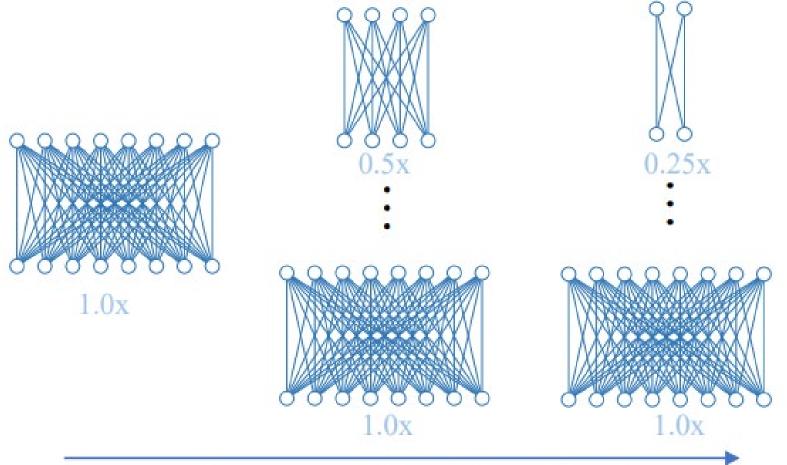


1. The base loss is based on the relative distance to produce temporal consistent outputs of the

Dynamic Sampling and Group Regularization

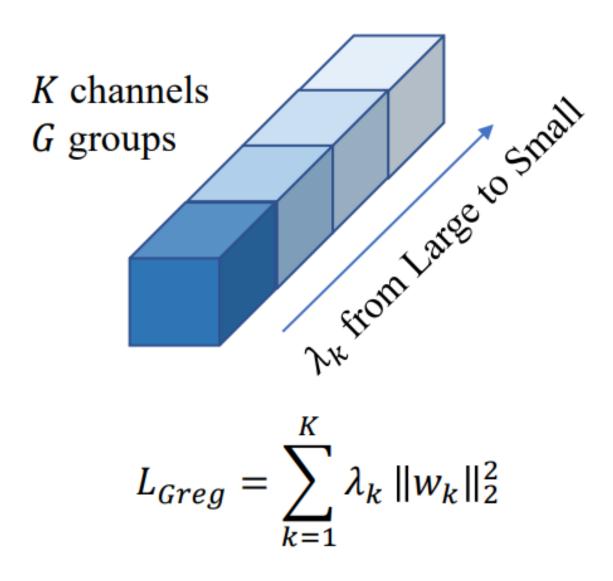
- Dynamic Sampling:
 - It is unnecessary to introduce the training of sub-networks at the beginning.
 - The training of sub-networks should be gradual. $[1.0, 1.0] \rightarrow [0.75, 1.0] \rightarrow [0.5, 1.0] \rightarrow [0.25, 1.0]$

- Group Regularization:
 - In the training of US-Net, the majority of the weights will be concentrated on the earlier channels.
 - We propose group regularization by giving more degrees of freedom (smaller coefficients) to the later channels.



Sub-Network Sampling Space

Increase of Training Epochs



Experimental Results

- cost.
- Even comparable with SEED, which requires pretrained teacher and individual training.

Backbone	Method	Once	Pretrained	Training			Ι	linear	Accu	racy (%)		
Dackoolie	wieniou	Training	Teacher	Cost	1.0x	0.9x	0.8x	0.7x	0.6x	0.5x	0.4x	0.3x	0.25x
	SimCLR [7]	×	×	nT	66.5	65.4	64.7	63.7	62.6	61.0	59.0	56.1	53.6
	SimSiam [9]	×	×	nT	66.5	65.4	64.6	63.5	62.6	60.0	58.3	54.9	52.4
	BYOL [14]	×	×	nT	66.8	66.0	65.6	65.3	63.0	62.1	59.5	56.0	54.3
	SEED [13]	×	BYOL R-50	nT	67.3	66.6	65.8	65.2	64.8	63.5	62.2	60.1	58.5
ResNet-18	SEED-MSE	×	BYOL R-18	nT	67.5	67.2	66.5	66.0	65.9	64.8	<u>64.0</u>	<u>62.4</u>	60.1
	SEED-MSE	×	BYOL R-50	nT	67.5	66.8	66.7	66.0	65.4	<u>64.9</u>	63.6	61.3	60.1
	US [31]+SimCLR	 ✓ 	×	4T	65.5	64.9	63.8	63.6	62.7	61.8	60.2	58.2	57.4
	US [31]+SimSiam	 ✓ 	×	4T	57.5	57.4	57.3	57.0	56.3	55.4	54.5	53.1	52.4
	Ours	 ✓ 	×	2.5T								60.9	<u>60.4</u>
	Ours (800ep)	 ✓ 	×	5T	70.1	69.3	69.0	68.7	67.3	66.4	64.2	63.1	62.3
	BYOL [14]	×	×	nT	67.0	66.7	66.5	66.3	66.0	64.9	63.8	62.1	61.2
	SEED [13]	×	BYOL R-50	nT	70.3	69.8	69.6	69.4	69.0	68.2	67.2	65.6	65.1
	SEED-MSE	×	BYOL R-50	nT	69.4	69.0	68.5	69.1	68.4	68.1	67.3	66.9	66.4
ResNet-50	US [31]+SimCLR	 ✓ 	×	4T	70.1	69.9	69.7	69.3	68.7	68.2	67.5	66.0	65.5
	US [31]+SimSiam	 ✓ 	×	4T	54.7	54.6	54.7	54.7	54.7	54.8	54.6	54.3	54.0
	Ours	 ✓ 	×	2.5T	72.6	72.0	71.5	71.2	70.6	70.2	68.6	67.7	<u>67.4</u>
	Ours (800ep)	 ✓ 	×	5T	73.0	72.5	71.9	71.6	71.1	70.8	69.1	68.0	67.6
	BYOL [14]	×	×	nT	61.2	60.7	60.5	60.2	59.9	58.7	57.3	54.6	51.9
	SEED-MSE	×	BYOL R-50	nT	68.6	68.9	67.6	67.3	67.4	66.3	65.5	64.0	62.6
MobileNetv2	SEED-MSE	×	BYOL MBv2	nT	63.8	63.5	63.8	63.6	63.6	63.3	62.7	62.1	<u>59.8</u>
widdheinetv2	US [31]+SimCLR	✓	×	4T	56.2	56.0	55.3	55.0	54.8	54.3	54.0	53.2	52.2
	US [31]+SimSiam	✓	×	4T	-	-	-	-	-	-	-	-	-
	Öurs	\checkmark	×	2.5T	<u>65.7</u>	<u>65.1</u>	<u>64.2</u>	<u>63.6</u>	63.4	62.2	61.5	60.7	59.3

Our method achieves higher accuracy consistently than baseline methods, with much less training

Application to Vision Transformers

• Effectiveness when applied to vision transformer? Yes.

Table 3. Linear evaluation results for ViT on CIFAR-10.

Backbone	Method	Once Training		ear Aco 0.75x		
ViT-Tiny	MoCov3 [10] US+MoCov3 Ours	\times \checkmark \checkmark	82.6 79.8 86.0	79.5 79.4 84.7	75.8 77.6 83.3	68.0 76.4 80.2
ViT-Small	MoCov3 [10] US+MoCov3 Ours	× ✓ ✓	88.0 88.2 90.3	86.8 87.5 89.7	83.0 86.3 88.7	75.5 84.9 85.5

ImageNet and Transferring Experiments

Table 4. Linear evaluation results on ImageNet.

		Once	Lin	ear Aco	curacy	y (%)
Backbone	Method	Training	1.0x	0.75x	0.5x	0.25x
	BYOL	×	54.0	53.7	47.4	34.9
ResNet-18	US+BYOL	 ✓ 	55.9	53.1	48.0	40.6
	Ours	 ✓ 	56.9	54.5	48.7	40.7
	BYOL	×	68.1	66.3	61.2	50.9
ResNet-50	US+BYOL	 ✓ 	64.7	64.3	62.6	57.1
	Ours	\checkmark	68.4	66.7	63.4	57.7

Similar trends are observed when transferring to downstream classification tasks.

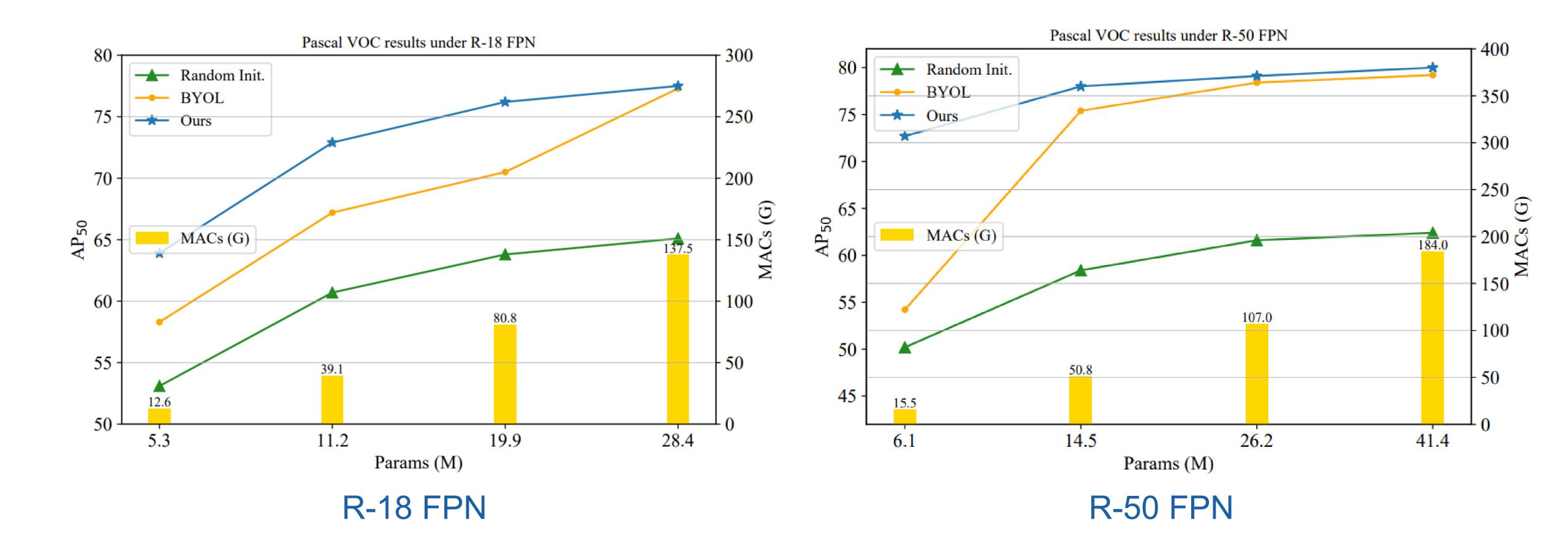
Table 6. Transfer results on recognition benchmarks under linear evaluation. 'C-10/100' denotes 'CIFAR-10/100'.

Net	Width	Params	MACS	Method	C-10	Linear C-100	Accuracy Flowers	7 (%) Pets	Dtd
		22.56M		BYOL Ours	87.1 87.1	60.6 61.5	81.0 90.6	80.9 79.4	70.7 72.6
R-50	0.75x	14.77M	2.34G	BYOL Ours	83.6 84.4	52.8 56.9	89.7	74.2 78.0	71.1
K-30	0.5x	6.92M	1.06G	BYOL Ours	80.6 81.6	52.0 52.8	88.1	75.0 76.8	68.8
	0.25x	1.99M	0.28G	BYOL Ours	75.9 78.9	46.2 49.9		64.7 74.0	

US3L achieves better performance at all widths with only once training and one copy of weights.

Downstream Object Detection

• As we decrease the width, our advantages over the baseline counterpart BYOL will be further expanded.



Ablation studies

.

- Experimental results are in full agreement with the proposed three guidelines.
- Consistency should not only exist between iterations, but also across sub-networks.
- The use of an auxiliary distillation head will result in consistent improvements.

Page Logo	Cose	Distill	Auxiliary	Momentu	m Target	Linear Accuracy (%)								
Base Loss	Case	Loss	Distill Head	Base Network	Sub Network	1.0x	0.9x	0.8x	0.7x	0.6x	0.5x	0.4x	0.3x	0.25x
	1	×	×	×	×	-	-	-	-	-	-	-	-	-
	2	MSE	×	×	×	57.5	57.4	57.3	57.0	56.3	55.4	54.5	53.1	52.4
	3	MSE	×	\checkmark	\checkmark	64.7	64.7	64.5	64.3	63.9	62.6	61.3	59.7	59.3
MSE	4	MSE	\checkmark	\checkmark	\checkmark	65.4	65.0	64.8	64.5	63.8	62.7	61.1	59.8	58.9
	5	InfoNCE	×	×	×	62.3	62.3	62.3	62.2	61.8	60.6	58.9	57.6	57.2
	6	InfoNCE	×	×	✓	63.7	63.8	63.7	63.6	63.1	62.0	60.6	59.3	58.2
	7	InfoNCE	×	\checkmark	\checkmark	65.0	65.0	65.1	65.0	64.5	62.7	61.3	59.8	59.2
	8	InfoNCE	\checkmark	\checkmark	✓	65.5	65.5	65.6	65.0	64.6	63.2	61.6	60.2	59.7
	9	×	×	×	×	64.8	64.0	63.2	62.0	60.8	59.8	57.4	55.1	54.2
	10	MSE	×	×	×	65.0	64.4	63.1	62.3	61.9	60.3	58.3	57.1	56.6
	11	MSE	×	×	\checkmark	65.8	65.0	64.4	63.4	62.7	61.8	59.8	58.5	57.6
T A MOR	12	MSE	×	\checkmark	\checkmark	66.9	66.3	65.7	64.9	63.8	62.9	61.6	59.5	59.1
InfoNCE	13	MSE	\checkmark	\checkmark	✓	67.7	67.2	66.5	66.0	65.1	64.3	62.5	60.5	59.6
	14	InfoNCE	×	×	×	65.5	64.9	63.8	63.6	62.7	61.8	60.2	58.2	57.4
	15	InfoNCE	×	×	✓	64.7	64.5	64.0	63.6	62.3	61.4	59.8	58.4	57.9
	16	InfoNCE	×	✓	✓	66.0	65.4	64.8	64.3	63.8	62.4	61.1	59.8	58.7
	17	InfoNCE	\checkmark	\checkmark	\checkmark	67.4	66.0	66.1	65.6	64.7	64.0	62.2	60.2	59.5

Ablation studies

Backbone	Dynamic	Group		Line	ear Ac	curac	y (%)	
Баскоопе	Sampling	Reg.	1.0x	0.8x	0.6x	0.5x	0.3x	0.25x
	×	×	67.7	66.5	65.1	64.3	60.5	59.6
R-18	\checkmark	×	68.6	67.2	65.5	64.6	60.7	59.9
K -10	×	\checkmark	68.6	67.3	65.5	64.4	60.9	60.1
	\checkmark	\checkmark	69.0	68.0	66.1	64.7	60.9	60.4
	×	×	71.0	70.6	70.0	69.1	67.2	66.8
R-50	\checkmark	×	71.8	71.1	70.2	69.3	67.3	67.2
R -50	×	\checkmark	71.9	71.1	70.0	69.6	67.7	67.5
	\checkmark	\checkmark	72.6	71.5	70.6	70.2	67.7	67.4
	×	×	62.9	62.0	61.5	60.4	59.6	58.7
MBv2	\checkmark	×	64.7	63.3	62.3	61.7	60.7	59.2
WID V2	×	\checkmark	64.0	63.2	62.1	61.4	60.2	59.0
	\checkmark	\checkmark	65.7	64.2	63.4	62.2	60.7	59.3

Sandwich	Dynamic											
Rule	Sampling	1.0x	0.8x	0.6x	0.5x	0.3x	0.25x					
×	X					59.4						
×	 ✓ 	67.4	67.3	65.9	64.7	59.9	58.7					
\checkmark	×						59.6					
✓	\checkmark	68.6	67.3	65.5	64.4	60.9	60.1					

• Dynamic sampling and group regularization both improves the accuracy for various backbones.

• Our dynamic sampling strategy can be used alone or combined with the sandwich rule.

Conclusions

- for the loss design.
- accuracy, which eases coping with the large data volumes in SSL.
- group regularization.
- various benchmarks at all widths.

We discovered significant differences between supervised and self-supervised learning when training US-Net. Based on these observations, we analyzed and summarized three guidelines

We proposed a dynamic sampling strategy to reduce the training cost without sacrificing

We analyzed how the training scheme of US-Net limits the model capacity and proposed

✓ Exhaustive experimental results further show that our US3L achieves better performance on

