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Semi-Supervised Domain Adaptation

A bunch of source 
data

A few labeled target 
data

Many unlabeled target 
data

Goal:
● Extract invariant features across both domains

● Transfer knowledge from a source domain to another target domain



Challenge

● Domain shift
○ There is a misalignment between the 7th class of the source data and the 59th class of the 

target data.

0-th iteration 5000-th iteration



Proposed Framework

Source Label Adaptation (SLA)

● A novel source-adaptive paradigm for Semi-Supervised Domain Adaptation.
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Key Ideas

● View the source data as a version of the target 

data with noisy labels

● Correct the source labels with the estimated 

target centers in the current feature space.



Source Label Adaptation (SLA)

● The framework can be easily coupled with the current SOTA SSDA methods.

SLA

SOTA SSDA 



Experiment



Motivation

● Goal: Find an ideal model 𝑔∗ that can minimize the target risk

● For each source data 𝑥", 𝑔∗(𝑥") is the most suitable label that best matches 
the ideal target space.

𝑔∗(𝑥"): the ideal target space𝑔∗(𝑥#): The most suitable label for 
source data in the ideal target space



● We propose to adapt the original source label 𝑦" to the ideal label 𝑔∗(𝑥").

● However, we are not able to access the ideal model 𝑔∗.

○ Approximate it through the current estimation of the unlabeled target data

Source Label Adaptation



Prototypical Network (Protonet)

● Find the center 𝑐$ of class 𝑘 over a certain 

feature space.

● Make predictions by the distance between 

the data point and each center.



Protonet with Target Centers

● We have access to a few target data.

○ Protonet with Target Centers

● Challenge

○ We have only 1 or 3 shot per class

○ The estimation might be inaccurate



Protonet with Pseudo Centers (PPC)

1. Determine the pseudo label for each 

unlabeled target data 𝑥%&. 

2. Find the pseudo center 𝑐$ for each class 𝑘, 

and construct a prototypical network 𝑃

based on these centers.
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Distance Comparison



Label Adaptation Loss

● Protonet with Pseudo Centers is still an estimation of the target view.

● We introduce a hyper-parameter 𝛼 to regularize the level of trust to this estimation.

● The adapted label "𝑦!" is defined as follow:

● We propose a label adaptation loss to replace the typical source loss function.

○ 𝐻 measures the cross entropy between two distributions.

adapted label

original label

suggested adapted label from PPC



Combine with SOTA SSDA Algorithms

● Typical SSDA algorithms usually attempt to explore better use of the unlabeled target 
data.

● Our framework, on the other hand, explores the training of source data with adapted 
labels to better align with the ideal target space.

● Thus, we can easily apply our framework to other SSDA algorithms, further boost their 
performance.



Source Label Adaptation (SLA)
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Implementation Details

● Warmup Stage

○ Our label adaptation framework relies on the quality of the predicted pseudo labels.

○ The prediction from the initial model can be noisy.

○ We introduce a warmup stage 𝑊 to obtain more stable pseudo labels.



Implementation Details

● Dynamic Update

○ During training phase, the feature space keeps changing for every iteration. 

○ Without updating centers, the quality of the estimated pseudo centers would 

progressively deteriorate.

○ At certain intervals, we re-estimate the pseudo labels and centers over current 

feature space.



Experiments on Major SSDA Datasets



Adapted Labels

● For the backpack case, SLA suggests to 

adapt the label from 100% backpack to:
○ 30% Backpack 

○ 5% Toys 

○ 4% Kettle.

● The adapted labels are much closer to the 

ideally-adapted labels (𝑔∗(𝑥#)).



The Intermediate Results in SLA

● PPC is actually a strong model that has 
performed well on the target domain at the 
early stage.

● However, without updating the source labels, 
it will end up converge to the same 
performance as the original method.

● On the other hand, in our SLA framework, the 
model leverages the benefits of PPC, 
resulting in better performance.



Conclusion

● General framework
○ Source Label Adaptation for Semi-Supervised Domain Adaptation

● Rethinking the usage of source data
○ Approach Domain Adaptation as a Noisy Label Learning problem. 

● Empirical Improvement 
○ Our method improve 2 representative SSDA algorithms on 2 major datasets for both 1-shot 

and 3-shot settings. 



Visit our project page for more details!

Code is available


