MaLP: Manipulation Localization Using a Proactive Scheme

By:

Vishal Asnani¹, Xi Yin², Tal Hassner², Xiaoming Liu¹ ¹Michigan State University, ²Meta Al

WED-AM-393

Meta

High-Level Summary of MaLP

Two-branch architecture

Generalization across unseen GMS

Contributions:

Overview

- 1. A novel proactive approach for manipulation localization.
- 2. Learning template set unsupervisedly to perform encryption.
- 3. A plug-and-play discriminator module to improve image generation quality for GMs.
- 4. A generalization benchmark for evaluating manipulation localization.

Chai et al. What makes fake images detectable? understanding properties that generalize. In ECCV 2020:

Passive Manipulation Localization

Weaknesses

Poor generalization across unseen GMs

Low-resolution fakeness map Fail on unseen image attribute modification

Proactive Manipulation Localization

Challenges

Formulate constraints for the template.

- Estimate a high-resolution fakeness map.
- Generalizable to unseen GMs and attributes manipulation.

Innovations

- Proactive scheme.
- Train on 1 GM and test on 22 GMs.
- Highly efficient.
- A convenient plug-and-play discriminator.
- Exhaustive evaluation benchmark.

Manipulation localization comparison with prior works.

Method	Localization			Detection		
	CS	PSNR	SSIM	Accuracy	EER	AUC
Dang et al.	0.6230	6.214	0.2178	0.9975	0.0050	0.9975
Huang el al.	0.8831	22.890	0.7876	0.9945	0.0077	0.9998
MaLP	0.9394	23.020	0.7312	0.9991	0.0072	1.0

Comparison of localization performance across unseen GMs and attribute modifications.

Method	Cosine similarity (AttGAN)			Cosine similarity (StyleGAN)		
	Bald	Black hair	Eyeglasses	Smile	Age	Gender
Huang el al.	0.8141	0.6932	0.6950	0.6176	0.3141	0.6470
MaLP	0.8201	0.7940	0.8557	0.8159	0.8255	0.8016

MaLP outperforms prior works for localization and detection

MaLP has **better generalization** across different facial attributes modifications

Dang et al, On the detection of digital face manipulation. In CVPR 2020

Huang et al, Fakelocator: Robust localization of GAN-based face manipulations. IEEE Transactions on Information Forensics and Security, 2022.

6 Michigan State University

Generalization Across Multiple GMs

Better generalization performance across unseen GMs compared to prior passive methods

Dang et al, On the detection of digital face manipulation. In *CVPR 2020* Chai et al. What makes fake images detectable? understanding properties that generalize. In *ECCV 2020:*

Manipulation Localization Visualization

Real image

Encrypted image

Manipulated image

GT fakeness map

Real image fakeness map

Manipulated image fakeness map

MaLP is able to localize manipulated regions across different facial attributes and non-face images

MaLP as Discriminator

Real image

Manipulation before finetuning

Manipulation after finetuning

FID score comparison for the application of MaLP as a discriminator

State	Fine-tune	StarGAN FID		
Before	-	60.49		
∆ ft or	G	51.91		
Alter	G + MaLP	52.07		

Fine-tuning GM with MaLP as discriminator produces **better quality** generated images

Conclusions

- **Proactive scheme** for image manipulation localization is proposed.
- A **template set** is estimated using defined constraints to benefit localization.
- The fakeness map is estimated via a **two-branch architecture** using local and global-level features.
- A generalization benchmark for manipulation localization consisting of evaluation on 22 GMs is proposed.
- Better localization performance than prior SoTA works.
- A plug-and-play discriminator module for improving generation quality of GMs.

Thank you for listening!

GitHub

Paper

