MaLP: Manipulation Localization Using a Proactive Scheme

By:

Vishal Asnani ${ }^{1}$, Xi Yin ${ }^{2}$, Tal Hassner ${ }^{2}$, Xiaoming Liu ${ }^{1}$
${ }^{1}$ Michigan State University, ${ }^{2}$ Meta AI

WED-AM-393

High-Level Summary of MaLP

Overview

Template

Two-branch architecture

Generalization across unseen GMS

Contributions:

1. A novel proactive approach for manipulation localization.
2. Learning template set unsupervisedly to perform encryption.
3. A plug-and-play discriminator module to improve image generation quality for GMs .
4. A generalization benchmark for evaluating manipulation localization.

Passive Manipulation Localization

Weaknesses

Poor generalization across unseen GMs

Low-resolution
fakeness map

Fail on unseen image attribute modification

Proactive Manipulation Localization

Image encryption

Proactive localization

Challenges

\square Formulate constraints for the template.
\square Estimate a high-resolution fakeness map.
\square Generalizable to unseen GMs and attributes manipulation.

Innovations

\square Proactive scheme.
\square Train on 1 GM and test on 22 GMs.
\square Highly efficient.
\square A convenient plug-and-play discriminator.
\square Exhaustive evaluation benchmark.

Framework

Results

Manipulation localization comparison with prior works.

Method	Localization			Detection		
	CS	PSNR	SSIM	Accuracy	EER	AUC
Dang et al.	0.6230	6.214	0.2178	0.9975	$\mathbf{0 . 0 0 5 0}$	0.9975
Huang el al.	0.8831	22.890	$\mathbf{0 . 7 8 7 6}$	0.9945	0.0077	0.9998
MaLP	$\mathbf{0 . 9 3 9 4}$	$\mathbf{2 3 . 0 2 0}$	0.7312	$\mathbf{0 . 9 9 9 1}$	0.0072	$\mathbf{1 . 0}$

Comparison of localization performance across unseen GMs and attribute modifications.

Method	Cosine similarity (AttGAN)			Cosine similarity (StyleGAN)		
	Bald	Black hair	Eyeglasses	Smile	Age	Gender
Huang el al.	0.8141	0.6932	0.6950	0.6176	0.3141	0.6470
MaLP	$\mathbf{0 . 8 2 0 1}$	$\mathbf{0 . 7 9 4 0}$	$\mathbf{0 . 8 5 5 7}$	$\mathbf{0 . 8 1 5 9}$	$\mathbf{0 . 8 2 5 5}$	$\mathbf{0 . 8 0 1 6}$

MaLP outperforms prior works for localization and detection
MaLP has better generalization across different facial attributes modifications

Generalization Across Multiple GMs

Better generalization performance across unseen GMs compared to prior passive methods

Manipulation Localization Visualization

Real image

Encrypted image

Manipulated image

GT fakeness map

Real image fakeness map

MaLP is able to localize manipulated regions across different facial attributes and non-face images

MaLP as Discriminator

Conclusions

- Proactive scheme for image manipulation localization is proposed.
- A template set is estimated using defined constraints to benefit localization.
- The fakeness map is estimated via a two-branch architecture using local and global-level features.
- A generalization benchmark for manipulation localization consisting of evaluation on 22 GMs is proposed.
- Better localization performance than prior SoTA works.
- A plug-and-play discriminator module for improving generation quality of GMs.

Thank you for listening!

