

Logical Consistency and Greater Descriptive Power for Facial Hair Attribute Learning

Haiyu Wu, Grace Bezold, Aman Bhatta, Kevin W. Bowyer

Department of Computer Science & Engineering, University of Notre Dame

WED-AM-035

Quick Preview

Effect of facial hair in face recognition

Facial hair attributes in existing datasets:

- 5 o'clock shadow
- Mustache
- Sideburns
- No Beard
- Goatee

Contribution: Dataset with more descriptive facial hair annotations.

FH37K (37,000+ images with facial hair annotations)

Goal

Richer information on facial hair - area, length, connectedness

Annotation options

Beard area: clean shaven, chin area, side to side, info_not_vis

Beard length: 5 o'clock shadow, short, medium, long, info_not_vis

Mustache: none, isolated, connected to beard, info not vis

Sideburns: none, sideburns present, connected to beard, info not vis

Bald: false, top only, sides only, top and sides, info not vis

Þ

Classification performance

Performance of the models trained with FH37K dataset

- Traditional methods do not consider the logical relationships of attributes
- Methods that handle the data imbalance might give a high accuracy illusion on positive side
- Proposed LCPloss and label compensation strategy has the best performance.

model training	ACC_{avg}	$\operatorname{ACC}_{avg}^n$	$\operatorname{ACC}_{avg}^p$			
Not considering logical consistency						
BCE 88.82 93.72 54.97						
BCE*	90.22	94.72	63.73			
BCE-MOON*	88.96	90.67	81.75			
BF*	89.84	95.43	58.41			
Considering logical consistency						
BCE	45.10	46.02	32.62			
BCE*	53.29	54.59	42.40			
BCE-MOON*	46.46	47.54	32.95			
BF*	39.96	40.95	31.45			

model training	ACC_{avg}	ACC^n_{avg}	ACC^p_{avg}			
Label compensation on test						
BCE + LC	87.47	90.08	61.55			
$BCE + LC^*$	88.83	91.49	68.78			
BCE-MOON + LC*	49.39	50.55	34.62			
$BF + LC^*$	88.10	90.91	66.05			
BCE + LCP + LC	87.82	90.37	59.05			
$BCE + LCP + LC^*$	89.46	92.02	66.71			
Label compensation on train and test						
BCE + LCP + LC	88.30	91.10	62.44			
$BCE + LCP + LC^*$	89.89	92.65	70.23			

Contribution: Approach to handle logical consistency across annotations.

Effect of beard area in face recognition

Contribution: Facial hair effects on recognition accuracy across demographics.

FH37K dataset

More descriptive attributes are needed!

Limitations of existing datasets

	# of images	# of ids	# of facial hair attributes	Area	Length	CNDN	E _c
Berkeley Human	8.053	_	0	0	0	0	x
Attributes [10]*	.,						
Attributes 25K [55]	24,963	24,963	0	0	0	0	×
FaceTracer [29]*	15,000	15,000	1 (Mustache)	0	0	0	×
Ego-Humans [48]	2,714	-	¹ Lack of ev	valuatio	on on	0	×
CelebA [36]*	202,599	10.177	heir des ground tru	ith lah		0	X
LFWA [36]*	13,233 P			*		0	×
PubFig [32]*	58,797	escription	lock, Goatee,)	1	1	0	×
LFW [26]*	13,233	5,749	5 (5 o'Clock, Goatee,)	1	1	0	X
UMD-AED [22]	2,800	-	5 (5 o'Clock, Goatee,)	1	1	0	×
YouTube Faces Dataset	3 1 2 5	1 505	5 (5 o'Clock Goatee)	1	1	0	x
(with attribute labels [23])	5,425	1,395	5 (5 0 Clock, Goalec,)	1	1	U	^
CelebV-HQ [57]*	35,666 video clips	15,653	5 (5 o'Clock, Goatee,)	1	1	0	×
MAAD-Face [47]*	3.3M	9,131	5 (5 o'Clock, Goatee,)	1	1	0	1
FH37K (this paper)	37,565	5,216	17 (Chin area, Short)	4	4	4	1

Table 1. Comparison of facial hair descriptions in face attribute datasets. CNDN and E_c stand for connectedness and estimating the consistency rate of the annotations. Datasets with \star are available online. FH37K has richer annotations that can cover the area, length, and connectedness of the facial hair.

FH37K

Goal

Richer information on facial hair - area, length, connectedness

Annotation options

Beard area: clean shaven, chin area, side to side, info_not_vis

Beard length: 5 o'clock shadow, short, medium, long, info_not_vis

Mustache: none, isolated, connected to beard, info not vis

Sideburns: none, sideburns present, connected to beard, info not vis

Bald: false, top only, sides only, top and sides, info not vis

Data

The images we used are the subset of the CelebA, which are originally marked as No Beard = False. Also, the subset of the WebFace260M dataset (picking images for minority classes).

Documentation is available at: Definition of Facial Hair Annotations

We Waren mean expension full the attributes!

Logical consistency of predictions

Categories of logical relationships

- **Mutually exclusive**: The relationship among positive predictions must be **logical**, otherwise the predictions are **impossible**.
- **Dependency**: If attribute A is true, the attribute B **must be true**, otherwise the predictions are **impossible**.
- **Collectively exhaustive**: One of a group of attributes **must be true**, otherwise the predictions are **incomplete**.

Þ

Algorithm 1 Failed prediction detection

Attribute groups

Beard areas: Clean Shaven, Chin Area, Side to Side, Info not Vis *Beard lengths*: 5 O'clock Shadow, Median, Long, Info not Vis *Mustache*: None, Isolated, Connected-to-beard, Info not Vis *Sideburns*: None, Present, Connected-to-beard, Info not Vis *Bald*: False, Top only, Sides only, Top and Sides, Info not Vis

Fail conditions

Mutually exclusive:

1. More than one positive predictions in Beard areas (except Info not Vis), Beard lengths (except Info not Vis) Mustache, Sideburns, Bald group

2. Clean Shaven + any of the Beard lengths/Mustache Connected-to-beard/Sideburns Connected-to-beard

3. Chin area + Sideburns Connected-to-beard

4. Bald (Top and Sides or Sides only) + having sideburns (Sideburns Present, Sideburns Connected-to-beard) *Dependency*:

1. Having beard (Chin Area, Side to Side) + one of the beard lengths must be true

2. Mustache is connected to beard + !(Chin Area, Side to Side)

3. Sideburns is connected to beard + !Side to Side

Collectively exhaustive

No positive prediction in Beard area/Beard lengths/Mustache/Sideburns/Bald

Impossible: prediction fits any of the conditions in *Mutually exclusive* and *Dependency* **Incomplete:** prediction fits any of the conditions in *Collectively exhaustive*

	Ę

model training	ACC_{avg}	ACC^n_{avg}	ACC^p_{avg}			
Not considering logical consistency						
BCE	88.82	93.72	54.97			
BCE*	90.22	94.72	63.73			
BCE-MOON*	88.96	90.67	81.75			
BF*	89.84	95.43	58.41			
Considering logical consistency						
BCE	45.10	46.02	32.62			
BCE*	53.29	54.59	42.40			
BCE-MOON*	46.46	47.54	32.95			
BF*	39.96	40.95	31.45			

Backbone: ResNet50

Loss functions:

Baseline: BCE Handling imbalance data: BF, BCE-MOON

*: transfer learning

 Every logically inconsistent prediction is considered as *incorrect*

After considering logical consistency on predictions, the accuracy drops **significantly!** (43.26% decrease on average)

Real-world evaluation

Test set **(600K images)**: The images in the first 30,000 ID folders of WebFace260M

model training	N _{inp}	N _{imp}	R _{failed}
BCE	333,773	1,054	55.05
BCE*	242,279	6,034	40.83
BCE-MOON*	31,656	315,756	57.12
BF*	340,898	1,314	56.27

On average, 52.32% of the predictions are failed

The proposed methods

LCPLoss – handles impossible cases

政

Step1: Group attributes

Mutually exclusive:

$$A_{ex} = \{attr_1, attr_2, ..., attr_N\}$$

 $L_{ex} = \{l_1, l_2, ..., l_N\}$

Dependency:

$$A_d = \{attr_1, attr_2, ..., attr_N\}$$

 $L_d = \{l_1, l_2, ..., l_N\}$

Step3: Optimization

Force
$$\mathcal{P}_{ex}$$
 to 0, \mathcal{P}_d to 1 $\mathcal{L}_{LCP} = ||lpha \mathcal{P}_{ex} + eta(1-\mathcal{P}_d)||^2$

Step2: Conditional Probability on predictions

 $\mathcal{P}_d = \mathcal{P}(L_d|A_d) \qquad \mathcal{P}_{ex} = \mathcal{P}(A_{ex} \cap L_{ex})$

Since $\mathcal{P}_{ex} = \mathcal{P}(L_{ex}|A_{ex})P(A_{ex})$, we can formulate the calculation of \mathcal{P}_{ex} and \mathcal{P}_d as:

$$\mathcal{P} = \frac{1}{N} \sum_{i=0}^{N} \mathcal{P}(\sum l_i > 0 | attr_i = 1)$$
(4)

 l_i and $attr_i$ are **binary predictions** after thresholding.

Step4: Combine with BCE

$$\mathcal{L}_{total} = (1 - \lambda)\mathcal{L}_{BCE} + \lambda \mathcal{L}_{LCP}$$

Label compensation – handle incomplete cases

Pick the **maximum** confidence value as the **positive** prediction in a **group** of attributes

Beard area: CS, CA, S2S, Info not Vis

Accuracy

				model training	ACC _{avg}	ACC^n_{avg}	ACC^p_{avg}
			Considering logical consistency				
				BCE	45.10	46.02	32.62
				BCE*	53.29	54.59	42.40
model training	ACC _{avg}	ACC^n_{avg}	ACC^p_{avg}	BCE-MOON*	46.46	47.54	32.95
Not considering logic	al consisten	су		BF*	39.96	40.95	31.45
BCE	88.82	93.72	54.97	BCE + LCP	27.66	28.19	18.80
BCE*	90.22	94.72	63.73	BCE + LCP*	42.86	43.70	33.67
BCE-MOON*	88.96	90.67	81.75	Label compensation on test			
BF*	89.84	95.43	58.41	BCE + LC	87.47	90.08	61.55
BCE + LCP	88.90	95.55	46.13	BCE + LC*	88.83	91.49	68.78
BCE + LCP*	90.63	95.87	58.15	BCE-MOON + LC*	49.39	50.55	34.62
BCE + LCP + LC	89.11	95.06	52.17	$BF + LC^*$	88.10	90.91	66.05
$BCE + LCP + LC^*$	90.90	95.98	63.30	BCE + LCP + LC	87.82	90.37	59.05
				$BCE + LCP + LC^*$	89.46	92.02	66.71
				Label compensation on train and test			
				BCE + LCP + LC	88.30	91.10	62.44

 $BCE + LCP + LC^*$

89.89

92.65

70.23

Conclusions:

- Label compensation can improve the accuracy
- Labeling images in the logically consistent way can guide the model learning the logically consistent pattern on-the-fly The classification method that can handle the imbalance data can give a **high-accuracy illusion**
- 4. The proposed method has the outstanding performance

Logical consistency in real-world evaluation

model training	Ninn	Nima	Rfailed	1
BCE	331,870	1,038	55.13	1
BCE*	240,761	6,001	40.86	1
BCE-MOON*	31,512	313,044	57.05	
BF*	339,136	1,295	56.37	1
BCE + LCP	470,806	117	77.98	ĺ
BCE + LCP*	307,576	300	50.98	
Label compensation of	on test			ĺ
BCE + LC	0	10,215	1.69	
$BCE + LC^*$	0	11,134	1.84	Y
BCE-MOON + LC*	0	330,115	54.66	
$BF + LC^*$	0	14,007	2.32	
BCE + LCP + LC	0	14,097	2.33	Ī
$BCE + LCP + LC^*$	0	6,083	1.01	
Label compensation of	n train and	test		\mathbf{V}
BCE + LCP + LC	0	7,693	1.27	
$BCE + LCP + LC^*$	0	5,595	0.93	

Conclusions:

- 1. The Label compensation method can **eliminate** the incomplete cases
- Labeling images in the logically consistent way can guide the model learning the logically consistent pattern on-the-fly
- 3. The proposed method has the lowest fail rate

Effect of beard area on face recognition accuracy

Chin area focused

Dataset: **BA-test** Face matcher: MagFace

Image pairs with same beard area **increases** similarity value on both **genuine side and impostor side**

Same beard area focused

Logical Consistency and Greater Descriptive Power for Facial Hair Attribute Learning

Haiyu Wu, Grace Bezold, Aman Bhatta, Kevin W. Bowyer

Department of Computer Science & Engineering, University of Notre Dame

WED-AM-035

