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Motivation

With the similarity between explicit and implicit embeddings of the given

face, we can significantly distinguish it as real and fake, which facilitates

forgery detection.
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Contribution

• From a completely new perspective, we propose the implicit iden-

tity driven framework for face swapping detection, which explores the

implicit identity of fake faces. This enhances the deep network to

distinguish fake faces with unknown manipulations.

• We specially design explicit identity contrast (EIC) loss and the im-

plicit identity exploration (IIE) loss. EIC aims to pull real samples

closer to their explicit identities and push fake samples away from

their explicit identities. IIE is margin-based and guides fake faces

with known target identities to have small intra-class distances and

large inter-class distances.

• Extensive experiments and visualizations demonstrate the superiority

of our method over the state-of-the-art approaches.
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Implicit Identity Driven Framework

The outline of our proposed implicit identity driven framework for

deepfake face swapping detection. We hybridize real face samples (green

boxes) and fake face samples (red boxes) as training set.
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Explicit Identity Contrast

Leic =
1

NF

∑
i∈F

δ (Fim (xi ) ,Fem (xi ))−
1

NR

∑
i∈R

δ (Fim (xi ) ,Fem (xi )) , (1)

where R and F indicate the set of real and fake samples, respectively. NR

and NF denote the number of real samples and fake samples,

respectively. δ (·, ·) represents the cosine similarity calculation function,

which is defined as δ(u, v) = u
∥u∥ ·

v
∥v∥ .
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Implicit Identity Exploration

L+
iie = −Exi ,yi∼K

log es(cos(θyi )−m)

es(cos(θyi )−m) +
∑

j ̸=yi
es cos θj

 . (2)

Here, θj represents the angle between normalized Fim (xi ) and the

normalized proxy of j-th identity on the hypersphere. s and m stand for

feature rescale and margin hyperparameter, respectively.

mfake = α · 1

Nr

∑
i∈Rmini

cos (θyi ), (3)

where Rmini denotes the set of real samples for a mini-batch. Nr

represents the number of samples in Rmini . α is a hyperparameter to limit

the maximum value of the margin, which is empirically set to 0.5. The

margin mreal for the real sample is set to a fixed value of 0.4.
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Implicit Identity Exploration

During the implicit identity embedding network forward propagation, we

calculate the distance between sample xi and unknown identities in the

lookup table by cosine similarity, denoted as V TFim (xi ). During

backward, we update the y∗
i -th column in the lookup table by

vy∗
i
← βvy∗

i
+ (1− β)Fim (xi ), where β ∈ [0, 1]. Moreover, we define the

probability that sample xi is classified as y∗
i by the Softmax function and

maximize the expected log-likelihood

L−
iie = −Exi ,y∗

i ∼U

log e

(
vT
y∗
i
Fim(xi )/τ

)
∑Q

j=1 e
(vT

j Fim(xi )/τ)

 . (4)

The higher temperature τ leads to softer probability distribution.
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Ablation Study

Model Leic Liie
Celeb-DF DFDC

ACC (%) AUC (%) ACC (%) AUC (%)

A 70.34 74.09 69.85 72.65

B ✓ 77.76 82.24 76.39 78.80

C ✓ 76.40 81.46 74.95 77.22

D ✓ ✓ 79.16 83.80 79.37 81.23

Table 1: Effectiveness of the proposed constraints in our method on the Celeb-

DF and DFDC datasets. Specifically, Leic and Liie denote the EIC loss and IIE

loss, respectively.

The best performance is achieved when combining all the proposed

constraints with 79.16%, 83.80% ACC and 79.37%, 81.23% AUC on

Celeb-DF and DFDC, respectively.

7



Cross-dataset Evaluation

Method
FF++ Celeb-DF DFD DFDC

AUC (%) EER (%) AUC (%) EER (%) AUC (%) EER (%) AUC (%) EER (%)

Xception [1] 99.09 3.77 65.27 38.77 87.86 21.04 69.90 35.41

EN-b4 [2] 99.22 3.36 68.52 35.61 87.37 21.99 70.12 34.54

Face X-ray [3] 87.40 - 74.20 - 85.60 - 70.00 -

MLDG [4] 98.99 3.46 74.56 30.81 88.14 21.34 71.86 34.44

F3-Net [5] 98.10 3.58 71.21 34.03 86.10 26.17 72.88 33.38

MAT(EN-b4) [6] 99.27 3.35 76.65 32.83 87.58 21.73 67.34 38.31

GFF [7] 98.36 3.85 75.31 32.48 85.51 25.64 71.58 34.77

LTW [8] 99.17 3.32 77.14 29.34 88.56 20.57 74.58 33.81

Local-relation [9] 99.46 3.01 78.26 29.67 89.24 20.32 76.53 32.41

DCL [10] 99.30 3.26 82.30 26.53 91.66 16.63 76.71 31.97

UIA-ViT [11] 99.33 - 82.41 - 94.68 - 75.80 -

Ours 99.32 2.99 83.80 24.85 93.92 14.01 81.23 26.80

Table 2: Cross-database evaluation from FF++(C23) to Celeb-DF, DFD, and

DFDC in terms of AUC and EER. The FF++ belongs to the intra-testing results

while others represent to the unseen dataset testing.
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Cross-manipulation Evaluation

Train Method DF FS FST Mean

DF

EN-b4 99.97 46.24 51.26 65.82

MAT 99.92 40.61 45.39 61.97

GFF 99.87 47.21 51.93 66.34

DCL 99.98 61.01 68.45 76.48

Ours 99.51 63.83 73.49 78.94

FS

EN-b4 69.25 99.89 60.76 76.63

MAT 64.13 99.67 57.37 73.72

GFF 70.21 99.85 61.29 77.12

DCL 74.80 99.90 64.86 79.85

Ours 75.39 99.73 66.18 80.43

FST

EN-b4 61.11 56.19 99.52 72.27

MAT 58.15 55.03 99.16 70.78

GFF 61.48 56.17 99.41 72.35

DCL 63.98 58.43 99.49 73.97

Ours 65.42 59.50 99.50 74.81

Table 3: Cross-manipulation evaluation in terms of AUC. Diagonal results in-

dicate the intra-testing performance. DF, FS and FST denote the DeepFakes,

FaceSwap and FaceShifter datasets, respectively.
9



Multi-source manipulation Evaluation

Method
GID-DF (C23) GID-DF (C40) GID-F2F (C23) GID-F2F (C40)

ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%)

EfficientNet [2] 82.40 91.11 67.60 75.30 63.32 80.10 61.41 67.40

Focalloss [12] 81.33 90.31 67.47 74.95 60.80 79.80 61.00 67.21

ForensicTransfer [13] 72.01 - 68.20 - 64.50 - 55.00 -

Multi-task [14] 70.30 - 66.76 - 58.74 - 56.50 -

MLDG [4] 84.21 91.82 67.15 73.12 63.46 77.10 58.12 61.70

LTW [8] 85.60 92.70 69.15 75.60 65.60 80.20 65.70 72.40

DCL [10] 87.70 94.9 75.90 83.82 68.40 82.93 67.85 75.07

Ours 88.21 95.03 76.90 84.55 69.36 84.37 67.99 74.80

Table 4: Performance on multi-source manipulation evaluation. GID-DF means

traning on the other three manipulated methods of FF++ and test on DeepFakes.

The same for the others.
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Visualization

Cosine similarity distribution of explicit and implicit identities for real and

fake samples.

Cosine similarity distribution for positive and negative samples.
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