

Prototypical Residual Networks for Anomaly Detection and Localization

Hui Zhang ^{1,2} Zuxuan Wu ^{1,2} Zheng Wang ³ Zhineng Chen ^{1,2} * Yu-Gang Jiang ^{1,2}

¹ Shanghai Key Lab of Intell. Info. Processing, School of CS, Fudan University
 ² Shanghai Collaborative Innovation Center of Intelligent Visual Computing
 ³ School of Computer Science, Zhejiang University of Technology

Poster: WED-PM-374

Prototypical Residual Networks for Anomaly Detection and Localization

Anomaly Generation Strategies

Hui Zhang ^{1,2} Zuxuan Wu ^{1,2} Zheng Wang ³ Zhineng Chen ^{1,2}* Yu-Gang Jiang ^{1,2}

¹Shanghai Key Lab of Intell. Info. Processing, School of CS, Fudan University ²Shanghai Collaborative Innovation Center of Intelligent Visual Computing

³School of Computer Science, Zhejiang University of Technology

Anomaly Detection

○ Feature map of input 🔥 Feature map of prototype (Chesidual of two feature maps

Extended anomaly: $E = \overline{M} \odot N + (1 - \beta)C + \beta (M \odot N)$

- A augmented anomaly - augmented anomaly region R
- M the mask of anomaly β - opacity parameter

Training

Multi-scale prototypes obtained by clustering: $\mathcal{P}_i \in \mathbb{R}^{K imes c^j imes h^j imes w^j}$

Residual representation:

$$egin{aligned} \mathcal{D}_{i,j} = & \mathcal{D}(\mathcal{F}_{i,j} - \mathcal{P}_j^*), \ ext{s.t.} \ \mathcal{P}_j^* = & rgmin_{\mathcal{P}_j^k \subset \mathcal{P}_j} \|\mathcal{F}_{i,j} - \mathcal{P}_j^k\|_2 \end{aligned}$$

Multi-scale Fusion:

$$\mathcal{F}_{i,j}^{*} = f_{1j}\left(\mathcal{F}_{i,1}\right) + f_{2j}\left(\mathcal{F}_{i,2}\right) + f_{3j}\left(\mathcal{F}_{i,3}\right)$$

Multi-size Self-Attention:

$$\mathcal{A}_{i,j}^{s} = \operatorname{softmax}\left(\frac{\mathcal{Q}_{i,j}^{s}\left(\mathcal{K}_{i,j}^{s}\right)^{T}}{c^{s}}\right) \mathcal{V}_{i,j}^{s} \quad p_{s} \in \{h^{j}, h^{j}/2, h^{j}/4, h^{j}/8\}$$

 $\mathcal{L}_{total} = \text{Smooth}_{\mathcal{L}1} \left(\mathcal{M}_o, \mathcal{M} \right) + \lambda \mathcal{L}_{tocal} \left(\mathcal{M}_o, \mathcal{M} \right)$

Loss:

		141 4								51						-
	Ι↑	P↑	O↑	A ↑	Ι↑	P↑	O↑	A ↑	Ι↑	P↑	0↑	A ↑	Ι↑	P↑	O↑	1
DRAEM	97.6	96.7	91.3	68.1	91.1	83.4	4 70.5	35.6	89.0	87.1	61.6	19.2	81.1	85.6	67.9	3
CFLOW	97.5	97.7	93.4	59.6	91.2	95.1	87.6	45.2	90.5	96.1	71.6	54.0	95.2	97.4	93.8	4
SSPCAB	97.1	96.3	90.8	65.5	90.4	84.5	5 71.9	33.9	nput 88.3	6 ^{83.5}	DRAEM	PatchCo	re 83.4	86.2	66.1	бт ⁴
RD4AD	98.7	97.8	93.9	55.4	90.7	94.1	85.5	40.8	94.4	06.0	75.8	53.5	96.0	97.6	947	
PatchCore	99.2	98.1	93.9	56.3	92.5	96.1	88.0	49.0	92.0		76.3	51.5	94.6	97,1	S 99 3	
DRA	96.1	85.3	73.3	26.0	93.5	95.1	88.8	47.6	94.	s.	\$6.2	12.4	868	84	56	
Ours	99.4	99.0	96.1	78.6	98.2	96.6	5 93.8	49	94.		78.0	54.0	96.4	97/6	24	
Table 6. PRN pixel auroc, p Input	outperfo ixel pro,	orms cur pixel ap	rent SO	IA on f ference	our data time pe	r image	", "P", "C :.	, "A		¢	elyreter	to the fi	va metn	CS OF M	Rige	
	ut GT	DR	AEM Pato	chCore	Ours	Input	GT		PatchCo	re Ours	Inp	ut G	T DR	AEM Pa	tchCore	Ours
	*	-	<u></u> ,	•	۹.										•	-
)			•				8									
SUDVICE SUDVICE		C INTERNATION	THE PARTY NAMES								100		2			
		13124		1999.72	5865555		85	A CONTRACT				• •		• • • •		
	، ۲	2)	300	-		d						Ę	
Figure	, , ,	2			ז ז ?										842	8° 8
Figure	, , /	۶			ז ר											B° B
Figure 4	· 7 ·	3	↓ ↓ ↓	98.9 97.8	98.5 97.0	95.3 92.1	77.0 74.0		- ✓			98.6	98.4 9	5.7 7551 77		8° 8 80
Figure V	→ → ↓		✓ √ √	98.9 97.8 98.7	98.5 97.0 98.5	95.3 92.1 95.4	77.0 74.0 78.1					98.6 98.7 98.4	98.4 9998.2 9988.4 9	5.7 75 5.1 73 4.9 77		

Experiments

	$I\uparrow$	$\mathbf{P}\uparrow$	$O\uparrow$	$A\uparrow$	$T\downarrow$
PRN _{5%}	99.2	98.6	95.4	78.1	0.063
PRN10%	99.4	99.0	96.1	78.6	0.064
$PRN_{20\%}$	99.2	98.8	95.7	77.3	0.066
PRN100%	86.2	91.4	75.4	49.9	0.074

Table 6. Ablations of the ratio of prototypes to total normal samples. Table 7. Impact of the number of seen anomalies used.

Background

Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness.

Abnormal

Motivation

We propose a framework called Prototypical Residual Network (PRN) as an effective remedy for aforesaid issues.

- PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns, aiming to address identifying abnormal regions and appearance variations.
- We propose various anomaly-generation strategies to address imbalanced learning.
- ➢ PRN outperforms current SOTA on four datasets.

Method

Overview

Training

Multi-scale	prototypes :	$\mathcal{P}_j \in \mathbb{R}^{K imes c^j imes h^j imes w^j}$
Residual rep	resentation:	$egin{aligned} \mathcal{D}_{i,j} =& D(\mathcal{F}_{i,j} - \mathcal{P}_j^*), \ ext{s.t.} \ \mathcal{P}_j^* =& rgmin_{\mathcal{P}_j^k \subset \mathcal{P}_j} \ \mathcal{F}_{i,j} - \mathcal{P}_j^k\ _2 \end{aligned}$
Multi-scale	Fusion: $\mathcal{F}_{i,j}^{*} =$	$f_{1j}(\mathcal{F}_{i,1}) + f_{2j}(\mathcal{F}_{i,2}) + f_{3j}(\mathcal{F}_{i,3})$
Multi-size Se	elf-Attention:	$\mathcal{A}_{i,j}^{s} = \operatorname{softmax} \left(\frac{\mathcal{Q}_{i,j}^{s} \left(\mathcal{K}_{i,j}^{s} \right)^{T}}{c^{s}} \right) \mathcal{V}_{i,j}^{s}$ $n \in \{ h^{j}, h^{j}/2, h^{j}/4, h^{j}/8 \}$
		$p_s \in \{n^r, n^r/2, n^r/4, n^r/6\}$
Loss:	$\mathcal{L}_{total} = \text{Smooth}$	$\mathbf{M}_{\mathcal{L}1}\left(\mathcal{M}_{o},\mathcal{M} ight)+\lambda\mathcal{L}_{focal}\left(\mathcal{M}_{o},\mathcal{M} ight)$

Inference

Image-level anomaly score:

The average of the top-K anomalous pixels in the output.

Anomaly Generation Strategies

$$= \bar{M} \odot N + (1 - \beta)C + \beta \left(M \odot N \right)$$

E

More examples

Simulated Anomalies

 $S = \bar{M} \odot N + (1 - \beta)(M \odot A) + \beta (M \odot N)$

Notes

- A an augmented anomaly
- R augmented anomaly region
- M the mask of anomaly
- eta opacity parameter
- P Threshold Perlin noise

Numerical and visualization results

	MVTec				DAGM				BTAD				KolektorSDD2			
	$I\uparrow$	$\mathbf{P}\uparrow$	$\mathbf{O}\uparrow$	$A\uparrow$	$I\uparrow$	$\mathbf{P}\uparrow$	O↑	$A\uparrow$	Ι↑	$\mathbf{P}\uparrow$	O↑	$A\uparrow$	$I\uparrow$	$\mathbf{P}\uparrow$	O↑	A ↑
DRAEM	97.6	96.7	91.3	68.1	91.1	83.4	70.5	35.6	89.0	87.1	61.6	19.2	81.1	85.6	67.9	39.1
CFLOW	97.5	97.7	93.4	59.6	91.2	95.1	87.6	45.2	90.5	96.1	71.6	54.0	95.2	97.4	93.8	46.0
SSPCAB	97.1	96.3	90.8	65.5	90.4	84.5	71.9	33.9	88.3	83.5	54.1	13.0	83.4	86.2	66.1	44.5
RD4AD	98.7	97.8	93.9	55.4	90.7	94.1	85.5	40.8	94.4	96.9	75.8	53.5	96.0	97.6	94.7	43.5
PatchCore	99.2	98.1	93.9	56.3	92.5	96.1	88.0	49.0	92.6	96.9	76.3	51.5	94.6	97.1	89.3	49.8
DRA	96.1	85.3	73.3	26.0	93.5	95.1	88.8	47.6	94.2	75.4	56.2	12.4	86.8	84.4	56.9	3.6
Ours	99.4	99.0	96.1	78.6	98.2	96.6	93.8	49.4	94.7	97.1	78.0	54.0	96.4	97.6	94.9	72.5

Table 6. PRN outperforms current SOTA on four datasets. "I", "P", "O", "A" and "T" respectively refer to the five metrics of image auroc, pixel auroc, pixel ap, and inference time per image.

Figure 6. Qualitative examples on MVTec [4]. PRN achieves more accurate localization results for various types of anomalies.

\checkmark				97.4	91./	88.0	38.3
\checkmark	\checkmark		\checkmark	98.9	98.5	95.3	77.0
\checkmark		\checkmark	\checkmark	97.8	97.0	92.1	74.0
\checkmark	\checkmark	\checkmark		98.7	98.5	95.4	78.1
\checkmark	\checkmark	\checkmark	\checkmark	99.4	99.0	96.1	78.6

Table 4. Ablations of different modules in PRN.

	I ↑	P↑	O↑	$A\uparrow$	$T\downarrow$
PRN _{5%}	99.2	98.6	95.4	78.1	0.063
$PRN_{10\%}$	99.4	99.0	96.1	78.6	0.064
$PRN_{20\%}$	99.2	98.8	95.7	77.3	0.066
$PRN_{100\%}$	86.2	91.4	75.4	49.9	0.074

Table 6. Ablations of the ratio of prototypes to total normal samples.

\checkmark	\checkmark	\checkmark	\checkmark	99.1 98.6	98.4 98.4	95.4 95.7	77.4 75.2
	\checkmark	\checkmark	\checkmark	98.7	98.2	95.1	73.4
\checkmark	\checkmark	\checkmark		98.4	98.4	94.9	77.6
\checkmark	\checkmark	\checkmark	\checkmark	99.4	99.0	96.1	78.6

, `

Table 5. Ablations of anomaly generation strategies.

	DevNet [35]				DRA [13]				PRN(Ours)			
	Ι↑	$P\uparrow$	O↑	$A\uparrow$	Ι↑	$P\uparrow$	$\mathbf{O}\uparrow$	$A\uparrow$	Ι↑	$P\uparrow$	$0\uparrow$	A↑
1	79.6	75.3	51.0	16.5	88.9	78.8	58.2	19.1	98.8	98.3	95.4	74.7
5	86.7	83.7	66.9	22.7	93.5	82.8	68.6	21.9	99.2	98.6	95.6	76.4
10	92.2	85.3	71.4	24.4	96.1	85.3	73.3	26.0	99.4	99.0	96.1	78.6

Table 7. Impact of the number of seen anomalies used.

Conclusion

Contributions & Limitations

Contributions

- We proposed a novel framework called Prototypical Residual Network (PRN) for anomaly detection and localization
- We proposed various anomaly generation strategies to expand and diversify the anomalies
- We conduct in-depth experiments on four popular datasets to confirm the effectiveness and generalizability of PRN

Limitations

- > Our method requires ground truth masks of the seen anomaly samples
- Uniform image-level anomaly scores for anomalous images with different defect sizes do not favor small defects

Prototypical Residual Networks for Anomaly Detection and Localization Thanks !

Poster: WED-PM-374