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Ablation Study

Overview of  PRN

v We propose a novel network named PRN for anomaly detection. 
v We propose a variety of anomaly generation strategies.
v PRN outperforms current SOTA on four datasets.
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Figure 5. Generating extended anomalies. The anomalous region is
augmented by random augmentation and placed on a target area of
the normal sample to generate various anomalies online.

in-distribution anomalies by placing augmented anomalous
regions from seen anomalies on normal samples, and these
generated anomalies are named extended anomalies (EA).
EA enlarge the amount of anomalies and mitigate the data
imbalance problem. Another strategy is to create out-of-
distribution anomalies [68] using normal samples without
knowledge of the seen anomalies. These generated anoma-
lies are named simulated anomalies (SA) , which supplement
potential unseen anomalies.

Extended Anomalies. Instead of simply augmenting
the entire image from the seen anomalies, we augment the
specific anomalous regions of the seen anomalies and place
them at any possible position within the normal sample. First,
augmentations (Fig. 5, Aug1) are applied to a randomly se-
lected anomaly from the seen anomalies in order to generate
color varieties (Fig. 5, A). Aug1 takes two random opera-
tions from { equalize, solarize, posterize, sharpness, auto-
contrast, invert, gamma-contrast }. After that, we argument
the selected anomaly with random spatial transformations as
{ rotate, shear, shift } to obtain position and shape varieties
(Fig. 5, R). Since the extended anomalies should be as real-
istic and reasonable as possible, we propose a soft position
constrain to place R in the foreground. More specifically,
Target Areas (TA) is used to refer to areas where anomalies
can be placed. We crop R, using a randomly sampled target
area, to obtain clipped anomaly region (Fig. 5, C). If R has
no overlap with the target region, we perform Aug2 again
until R has overlap with the target region. We binarized C
to obtain the ground truth mask (Fig. 5, M ). The proposed
extended anomalies (Fig. 5, E) is therefore defined as:

E = M̄ � N + (1 � �)C + � (M � N) (4)

where M̄ is the inverse of M , � is the element-wise mul-
tiplication operation, � is the opacity parameter [68] for
better combination of abnormal and normal parts. For object
datasets and texture datasets, the target areas are part of the
foreground of the object and part of the whole image, re-
spectively. The shapes of the target are the set of geometries:
{circle, rectangular, polygonal}.

Simulated Anomalies. Similar to DRAEM [68], we

multiply Perlin [37] noise with random textures from the
DTD [8] dataset and apply these augmented textures to nor-
mal images. As these anomalies significantly differs from the
seen anomalies, we refer to these out-of-distribution anoma-
lies as heterologous anomalies (HEA). To further expand
the diversity of simulated anomalies, we introduce homol-
ogous anomalies (HOA), in which anomalies multiplied by
the Perlin noise are augmented normal images. Note that
the TA mentioned above is also applied to the generation of
simulated anomalies. More details about HEA and HOA are
presented in the supplementary materials.

3.5. Training and Inference

The decoder of PRN outputs an anomaly score map Mo,
which is of the same shape as the ground truth mask M.
Inspired by [68] and [63] , a focal loss [29] and a smooth
L1 loss [14] are applied to increase the robustness toward
accurate segmentation of hard examples and reduce the over-
sensitivity to outliers, respectively. Thus, the total loss Ltotal

used for training PRN is defined as

Ltotal = SmoothL1 (Mo, M) + �Lfocal (Mo, M) (5)

When the predicted Mo is accurate and sufficiently close
to M, Mo can be interpreted not only as the pixel-level
anomaly localization result, but also as an image-level
anomaly estimation for anomaly detection. Specifically, we
take the average of the top-K anomalous pixels as the image-
level anomaly score for anomaly detection. In a preliminary
study, we trained a classification network based on Mo for
image-level anomaly detection, but did not observe an im-
provement over top-K estimation.

4. Experiments

4.1. Experimental Details

Datasets. To validate the effectiveness and generaliz-
ability of our approach, we perform experiments on var-
ious datasets, i.e., MVTec Anomaly Detection (MVTec
AD [4]), DAGM [61], BeanTech anomaly detection dataset
(BTAD [34]), and KolektorSDD2 [7]. There are 10 object
sub-datasets and 5 texture sub-datasets in MVTec AD. Each
sub-dataset presents a diverse set of anomalies, which en-
ables a general evaluation of surface anomaly detection meth-
ods. DAGM contains 10 textured objects with small abnor-
mal regions that are visually very similar to the background.
BTAD includes three categories of real-world industrial prod-
ucts showcasing different body and surface defects. Kolek-
torSDD2 is a dataset of surface defects that vary in shape,
size, and color, from small scratches and spots to large sur-
face defects. We adopt the general supervised setting [13,35],
where the training set of each sub-dataset contains only 10
abnormal samples. More details will be provided in the sup-
plementary materials.

Training

Multi-scale prototypes obtained by clustering:

Residual representation:

Multi-scale Fusion:

Multi-size Self-Attention:

Input GT PatchCoreDRAEM Ours Input GT PatchCoreDRAEM Ours Input GT PatchCoreDRAEM Ours

Figure 6. Qualitative examples on MVTec [4]. PRN achieves more accurate localization results for various types of anomalies.

Anomaly Generation Performance

EA HEA HOA TA I " P " O " A "
X X 98.6 97.2 93.4 75.7
X X X 99.1 98.4 95.4 77.4
X X X 98.6 98.4 95.7 75.2

X X X 98.7 98.2 95.1 73.4
X X X 98.4 98.4 94.9 77.6
X X X X 99.4 99.0 96.1 78.6

Table 5. Ablations of anomaly generation strategies.

I " P " O " A " T #
PRN5% 99.2 98.6 95.4 78.1 0.063

PRN10% 99.4 99.0 96.1 78.6 0.064
PRN20% 99.2 98.8 95.7 77.3 0.066
PRN100% 86.2 91.4 75.4 49.9 0.074

Table 6. Ablations of the ratio of prototypes to total normal samples.

DevNet [35] DRA [13] PRN(Ours)

I " P " O " A " I " P " O " A " I " P " O " A "
1 79.6 75.3 51.0 16.5 88.9 78.8 58.2 19.1 98.8 98.3 95.4 74.7
5 86.7 83.7 66.9 22.7 93.5 82.8 68.6 21.9 99.2 98.6 95.6 76.4
10 92.2 85.3 71.4 24.4 96.1 85.3 73.3 26.0 99.4 99.0 96.1 78.6

Table 7. Impact of the number of seen anomalies used.

few prototypes lead to insufficient discrimination between
prototypes, resulting in inferior performance. The results
indicate that a proportion of 10% produces the optimum
performance. In addition, using fewer prototypes can speed
up inference.

Effects of the number of seen anomalies used. As
shown in Table 7, we explore the impact of the number
of anomalies used. Our approach significantly outperforms
Devnet [35] and DRA [13] using different numbers of seen
anomalies, which demonstrates the effectiveness of our pro-
posed anomaly generation strategies and the robustness of
PRN to datasets of different levels of imbalance.

4.4. Evaluation on other benchmarks

To further evaluate the anomaly detection and localization
capabilities of PRN, we benchmark PRN on three additional

DAGM [61] BTAD [34] KolektorSDD2 [7]

I " P " O " A " I " P " O " A " I " P " O " A "
DRAEM 91.1 83.4 70.5 35.6 89.0 87.1 61.6 19.2 81.1 85.6 67.9 39.1
CFLOW 91.2 95.1 87.6 45.2 90.5 96.1 71.6 54.0 95.2 97.4 93.8 46.0
SSPCAB 90.4 84.5 71.9 33.9 88.3 83.5 54.1 13.0 83.4 86.2 66.1 44.5
RD4AD 90.7 94.1 85.5 40.8 94.4 96.9 75.8 53.5 96.0 97.6 94.7 43.5
PatchCore 92.5 96.1 88.0 49.0 92.6 96.9 76.3 51.5 94.6 97.1 89.3 49.8
DRA 93.5 95.1 88.8 47.6 94.2 75.4 56.2 12.4 86.8 84.4 56.9 3.6
Ours 98.2 96.6 93.8 49.4 94.7 97.1 78.0 54.0 96.4 97.6 94.9 72.5

Table 8. Comparison of PRN with other approaches on DAGM,
BTAD, and KolektorSDD2.

widely used datasets, namely DAGM [61], BTAD [34] and
KolektorSDD2 [7]. As shown in Table 8, PRN achieves
new SOTA performance on all three datasets, proving its
effectiveness and generalization. Results for more detailed
comparisons and some qualitative examples are provided in
the supplementary material.

5. Conclusion

In this paper, we proposed a novel framework called Pro-
totypical Residual Network for anomaly detection and local-
ization. PRN learns residual resentations across multi-scale
feature maps and within multi-size receptive fields at each
scale, enabling accurate detection and localization of anoma-
lous regions that come in a variety of sizes, shapes and
numbers. In addition, we propose various anomaly gener-
ation strategies to expand and diversify the anomalies. We
conduct in-depth experiments on four popular datasets to con-
firm the effectiveness and generalizability of our approach.
PRN achieves new SOTA on anomaly detection and and
significantly surpasses previous arts in anomaly localization
performance.

Limitations. Our approach requires the dataset to pro-
vide accurate ground truth masks for anomalies. Using a
single image-level anomaly average score for anomalous
images with different defect sizes does not favor tiny defects.
We leave this intriguing extension to future work.
Acknowledgement This project was supported by NSFC
under Grant No. 62102092 and No. 62032006.
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Figure 5. Generating extended anomalies. The anomalous region is
augmented by random augmentation and placed on a target area of
the normal sample to generate various anomalies online.

in-distribution anomalies by placing augmented anomalous
regions from seen anomalies on normal samples, and these
generated anomalies are named extended anomalies (EA).
EA enlarge the amount of anomalies and mitigate the data
imbalance problem. Another strategy is to create out-of-
distribution anomalies [68] using normal samples without
knowledge of the seen anomalies. These generated anoma-
lies are named simulated anomalies (SA) , which supplement
potential unseen anomalies.

Extended Anomalies. Instead of simply augmenting
the entire image from the seen anomalies, we augment the
specific anomalous regions of the seen anomalies and place
them at any possible position within the normal sample. First,
augmentations (Fig. 5, Aug1) are applied to a randomly se-
lected anomaly from the seen anomalies in order to generate
color varieties (Fig. 5, A). Aug1 takes two random opera-
tions from { equalize, solarize, posterize, sharpness, auto-
contrast, invert, gamma-contrast }. After that, we argument
the selected anomaly with random spatial transformations as
{ rotate, shear, shift } to obtain position and shape varieties
(Fig. 5, R). Since the extended anomalies should be as real-
istic and reasonable as possible, we propose a soft position
constrain to place R in the foreground. More specifically,
Target Areas (TA) is used to refer to areas where anomalies
can be placed. We crop R, using a randomly sampled target
area, to obtain clipped anomaly region (Fig. 5, C). If R has
no overlap with the target region, we perform Aug2 again
until R has overlap with the target region. We binarized C
to obtain the ground truth mask (Fig. 5, M ). The proposed
extended anomalies (Fig. 5, E) is therefore defined as:

E = M̄ � N + (1 � �)C + � (M � N) (4)

where M̄ is the inverse of M , � is the element-wise mul-
tiplication operation, � is the opacity parameter [68] for
better combination of abnormal and normal parts. For object
datasets and texture datasets, the target areas are part of the
foreground of the object and part of the whole image, re-
spectively. The shapes of the target are the set of geometries:
{circle, rectangular, polygonal}.

Simulated Anomalies. Similar to DRAEM [68], we

multiply Perlin [37] noise with random textures from the
DTD [8] dataset and apply these augmented textures to nor-
mal images. As these anomalies significantly differs from the
seen anomalies, we refer to these out-of-distribution anoma-
lies as heterologous anomalies (HEA). To further expand
the diversity of simulated anomalies, we introduce homol-
ogous anomalies (HOA), in which anomalies multiplied by
the Perlin noise are augmented normal images. Note that
the TA mentioned above is also applied to the generation of
simulated anomalies. More details about HEA and HOA are
presented in the supplementary materials.

3.5. Training and Inference

The decoder of PRN outputs an anomaly score map Mo,
which is of the same shape as the ground truth mask M.
Inspired by [68] and [63] , a focal loss [29] and a smooth
L1 loss [14] are applied to increase the robustness toward
accurate segmentation of hard examples and reduce the over-
sensitivity to outliers, respectively. Thus, the total loss Ltotal

used for training PRN is defined as

Ltotal = SmoothL1 (Mo, M) + �Lfocal (Mo, M) (5)

When the predicted Mo is accurate and sufficiently close
to M, Mo can be interpreted not only as the pixel-level
anomaly localization result, but also as an image-level
anomaly estimation for anomaly detection. Specifically, we
take the average of the top-K anomalous pixels as the image-
level anomaly score for anomaly detection. In a preliminary
study, we trained a classification network based on Mo for
image-level anomaly detection, but did not observe an im-
provement over top-K estimation.

4. Experiments

4.1. Experimental Details

Datasets. To validate the effectiveness and generaliz-
ability of our approach, we perform experiments on var-
ious datasets, i.e., MVTec Anomaly Detection (MVTec
AD [4]), DAGM [61], BeanTech anomaly detection dataset
(BTAD [34]), and KolektorSDD2 [7]. There are 10 object
sub-datasets and 5 texture sub-datasets in MVTec AD. Each
sub-dataset presents a diverse set of anomalies, which en-
ables a general evaluation of surface anomaly detection meth-
ods. DAGM contains 10 textured objects with small abnor-
mal regions that are visually very similar to the background.
BTAD includes three categories of real-world industrial prod-
ucts showcasing different body and surface defects. Kolek-
torSDD2 is a dataset of surface defects that vary in shape,
size, and color, from small scratches and spots to large sur-
face defects. We adopt the general supervised setting [13,35],
where the training set of each sub-dataset contains only 10
abnormal samples. More details will be provided in the sup-
plementary materials.

Category Unsupervised Supervised

KDAD [47] CFLOW [18] DRAEM [68] SSPCAB [39] CFA [25] RD4AD [12] PatchCore [41] DevNet [35] DRA [13] Ours

Carpet 92.5/45.6 97.6/68.3 92.9/65.1 86.4/48.6 93.6/57.2 95.4/56.5 95.5/62.2 85.8/45.7 92.2/52.3 97.0/82.0

Grid 72.9/7.3 96.0/41.2 98.3/62.8 98.0/57.9 92.9/25.8 94.2/15.8 94.0/24.5 79.8/25.5 71.5/26.8 95.9/45.7
Leather 97.5/26.8 99.2/64.5 97.4/72.9 94.0/60.7 95.4/48.5 98.2/47.6 96.9/45.3 88.5/8.1 84.0/5.6 99.2/69.7
Tile 74.3/27.7 89.1/60.1 98.2/95.2 98.1/96.1 83.3/55.9 85.6/54.1 91.3/56.2 78.9/52.3 81.5/57.6 98.2/96.5

Wood 76.5/24.3 82.8/29.0 90.3/74.6 92.8/78.9 85.9/49.0 91.4/48.3 87.1/49.3 75.4/25.1 69.7/22.7 95.9/82.6

Bottle 88.6/54.8 94.0/68.1 96.8/88.9 96.3/89.4 94.6/80.3 96.3/78.0 95.4/76.8 83.5/51.5 77.6/41.2 97.0/92.3

Cable 66.2/12.6 94.1/60.6 81.0/56.4 80.4/52.0 91.7/74.7 94.1/52.6 96.8/67.0 80.9/36.0 77.7/34.7 97.2/78.9

Capsule 90.1/10.1 94.0/48.8 82.7/39.6 92.5/46.4 93.0/48.3 95.5/47.2 93.4/46.0 83.6/15.5 79.1/11.7 92.5/62.2

Hazelnut 94.3/34.2 97.1/59.9 98.5/92.6 98.2/93.4 95.2/60.0 96.9/60.7 90.9/53.2 83.6/22.1 86.9/22.5 97.4/93.8

Metal Nut 76.9/34.1 91.5/88.0 97.0/97.0 97.7/94.7 91.4/92.2 94.9/78.6 92.6/86.6 76.9/35.6 76.7/29.9 95.8/98.0

Pill 86.4/20.9 95.2/82.0 88.4/47.6 89.6/48.3 95.4/81.9 96.7/76.5 94.5/75.7 69.2/14.6 77.0/21.6 97.2/91.3

Screw 85.2/6.1 95.8/43.9 95.0/66.5 95.2/61.7 93.5/28.7 98.5/52.1 97.5/34.7 31.1/1.4 30.1/5.0 92.4/44.9
Toothbrush 87.3/18.3 95.3/46.3 85.6/45.5 85.5/39.3 86.8/55.7 92.3/51.1 94.0/37.9 33.5/6.7 56.1/4.5 95.6/78.1

Transistor 68.1/25.8 82.5/67.5 70.4/39.0 62.5/38.1 95.1/76.2 83.3/54.1 92.3/66.9 39.1/6.4 49.0/11.0 94.8/85.6

Zipper 86.5/31.5 96.6/65.2 96.8/77.6 95.2/76.4 94.3/65.2 95.3/57.5 96.1/62.3 81.3/19.6 91.0/42.9 95.5/77.6

Total Average 82.9/25.34 93.4/59.6 91.3/68.1 90.8/65.5 92.1/60.0 93.9/55.4 93.9/56.3 71.4/24.4 73.3/26.0 96.1/78.6

Table 2. Results of the PRO and AP metrics for anomaly localization performance on MVTec [4].

Backbone I " P " O " A " T #
CFLOW

WResNet50
97.5 97.7 93.4 59.6 0.127

RD4AD 98.7 97.8 93.9 55.4 0.094
PatchCore 99.2 98.1 93.9 56.3 0.133

CFLOW

ResNet18

96.2 98.1 92.8 59.2 0.106
RD4AD 97.9 97.1 92.7 53.7 0.076
DRA 96.1 84.1 71.5 25.7 0.223
PRN(Ours) 99.4 99.0 96.1 78.6 0.064

Table 3. Comparison of pre-trained based approaches in terms of
performance and inference time (second) on MVTec [4]. “I”, “P”,
“O”, “A” and “T” respectively refer to the five metrics of image
auroc, pixel auroc, pixel pro, pixel ap, and inference time per image.

standard. Our approach not only gains the best performance,
but also significantly reduces the inference time.

We qualitatively evaluate the performance of anomaly
localization compared to state-of-the-art methods DRAEM
[68] and PatchCore [41] by visualizing the results in Fig. 6.
Our model accurately locates the anomalies and clearly focus
on all anomalous regions, regardless of their sizes, shapes
and numbers. Additional qualitative results are provided in
the supplementary material.

4.3. Ablation Study

The importance of MP, MSA and MF. We investigate
the importance of each modules in PRN and the results are
reported in Table 4. We have the U-Net-like architecture
without any module on the skip-connection branch as the
baseline. Overall, PRN outperforms the baseline by a large
margin, especially on the P, O, and A metrics. All metrics
are significantly boosted by employing the MP that performs
explicit residual representation. When applying the MSA
which performs variable-sized anomalous feature learning,
the performance is further improved. This confirms the effec-
tiveness of information exchanging across multi-size recep-
tive fields. Finally, removing the MF causing the degradation

Module Performance

U-Net MP MSA MF I " P " O " A "
X 97.4 91.7 88.6 58.5
X X X 98.9 98.5 95.3 77.0
X X X 97.8 97.0 92.1 74.0
X X X 98.7 98.5 95.4 78.1
X X X X 99.4 99.0 96.1 78.6

Table 4. Ablations of different modules in PRN.

of performance, indicates that it is necessary to exchange
information across different scales.

Effects of different anomaly generation strategies. We
perform ablation studies to investigate the impact of the
different components of the proposed anomaly generation
strategies in Table 5. The proposed EA alleviates the prob-
lem of seen appearance variance, but does not adequately
explore the underlying unseen anomalies. Table 5 indicates
that the performance of the model increases with the vari-
ety of generated anomalies. We argue that the proposed SA
consisting of both HEA and HOA can generate anomalies
of various sizes, shapes and numbers, allowing our model
to generalize to unseen anomalies. Besides, the proposed
TA imposes soft constraints on the locations where anomaly
regions are imposed, making the generated anomalies as real-
istic and reasonable as possible, thus significantly improving
the performance of the model.

The effect of prototype proportion. The effect of the
ratio of prototypes to total normal samples is compared in
Table 6. Note that 100% means that no clustering is per-
formed. Each feature map of a normal sample is regarded
as a prototype and the number of prototypes is equal to the
number of normal samples. The poor performance of the
PRN100% indicates that the residual representation obtained
from the closest cluster prototype is more representative than
that obtained from the single closest sample. Besides, too
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Figure 6. Qualitative examples on MVTec [4]. PRN achieves more accurate localization results for various types of anomalies.

Anomaly Generation Performance

EA HEA HOA TA I " P " O " A "
X X 98.6 97.2 93.4 75.7
X X X 99.1 98.4 95.4 77.4
X X X 98.6 98.4 95.7 75.2

X X X 98.7 98.2 95.1 73.4
X X X 98.4 98.4 94.9 77.6
X X X X 99.4 99.0 96.1 78.6

Table 5. Ablations of anomaly generation strategies.

I " P " O " A " T #
PRN5% 99.2 98.6 95.4 78.1 0.063

PRN10% 99.4 99.0 96.1 78.6 0.064
PRN20% 99.2 98.8 95.7 77.3 0.066
PRN100% 86.2 91.4 75.4 49.9 0.074

Table 6. Ablations of the ratio of prototypes to total normal samples.

DevNet [35] DRA [13] PRN(Ours)

I " P " O " A " I " P " O " A " I " P " O " A "
1 79.6 75.3 51.0 16.5 88.9 78.8 58.2 19.1 98.8 98.3 95.4 74.7
5 86.7 83.7 66.9 22.7 93.5 82.8 68.6 21.9 99.2 98.6 95.6 76.4
10 92.2 85.3 71.4 24.4 96.1 85.3 73.3 26.0 99.4 99.0 96.1 78.6

Table 7. Impact of the number of seen anomalies used.

few prototypes lead to insufficient discrimination between
prototypes, resulting in inferior performance. The results
indicate that a proportion of 10% produces the optimum
performance. In addition, using fewer prototypes can speed
up inference.

Effects of the number of seen anomalies used. As
shown in Table 7, we explore the impact of the number
of anomalies used. Our approach significantly outperforms
Devnet [35] and DRA [13] using different numbers of seen
anomalies, which demonstrates the effectiveness of our pro-
posed anomaly generation strategies and the robustness of
PRN to datasets of different levels of imbalance.

4.4. Evaluation on other benchmarks

To further evaluate the anomaly detection and localization
capabilities of PRN, we benchmark PRN on three additional

DAGM [61] BTAD [34] KolektorSDD2 [7]

I " P " O " A " I " P " O " A " I " P " O " A "
DRAEM 91.1 83.4 70.5 35.6 89.0 87.1 61.6 19.2 81.1 85.6 67.9 39.1
CFLOW 91.2 95.1 87.6 45.2 90.5 96.1 71.6 54.0 95.2 97.4 93.8 46.0
SSPCAB 90.4 84.5 71.9 33.9 88.3 83.5 54.1 13.0 83.4 86.2 66.1 44.5
RD4AD 90.7 94.1 85.5 40.8 94.4 96.9 75.8 53.5 96.0 97.6 94.7 43.5
PatchCore 92.5 96.1 88.0 49.0 92.6 96.9 76.3 51.5 94.6 97.1 89.3 49.8
DRA 93.5 95.1 88.8 47.6 94.2 75.4 56.2 12.4 86.8 84.4 56.9 3.6
Ours 98.2 96.6 93.8 49.4 94.7 97.1 78.0 54.0 96.4 97.6 94.9 72.5

Table 8. Comparison of PRN with other approaches on DAGM,
BTAD, and KolektorSDD2.

widely used datasets, namely DAGM [61], BTAD [34] and
KolektorSDD2 [7]. As shown in Table 8, PRN achieves
new SOTA performance on all three datasets, proving its
effectiveness and generalization. Results for more detailed
comparisons and some qualitative examples are provided in
the supplementary material.

5. Conclusion

In this paper, we proposed a novel framework called Pro-
totypical Residual Network for anomaly detection and local-
ization. PRN learns residual resentations across multi-scale
feature maps and within multi-size receptive fields at each
scale, enabling accurate detection and localization of anoma-
lous regions that come in a variety of sizes, shapes and
numbers. In addition, we propose various anomaly gener-
ation strategies to expand and diversify the anomalies. We
conduct in-depth experiments on four popular datasets to con-
firm the effectiveness and generalizability of our approach.
PRN achieves new SOTA on anomaly detection and and
significantly surpasses previous arts in anomaly localization
performance.

Limitations. Our approach requires the dataset to pro-
vide accurate ground truth masks for anomalies. Using a
single image-level anomaly average score for anomalous
images with different defect sizes does not favor tiny defects.
We leave this intriguing extension to future work.
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Table 5. Ablations of anomaly generation strategies.
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Table 7. Impact of the number of seen anomalies used.

few prototypes lead to insufficient discrimination between
prototypes, resulting in inferior performance. The results
indicate that a proportion of 10% produces the optimum
performance. In addition, using fewer prototypes can speed
up inference.

Effects of the number of seen anomalies used. As
shown in Table 7, we explore the impact of the number
of anomalies used. Our approach significantly outperforms
Devnet [35] and DRA [13] using different numbers of seen
anomalies, which demonstrates the effectiveness of our pro-
posed anomaly generation strategies and the robustness of
PRN to datasets of different levels of imbalance.

4.4. Evaluation on other benchmarks

To further evaluate the anomaly detection and localization
capabilities of PRN, we benchmark PRN on three additional

DAGM [61] BTAD [34] KolektorSDD2 [7]
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KolektorSDD2 [7]. As shown in Table 8, PRN achieves
new SOTA performance on all three datasets, proving its
effectiveness and generalization. Results for more detailed
comparisons and some qualitative examples are provided in
the supplementary material.
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In this paper, we proposed a novel framework called Pro-
totypical Residual Network for anomaly detection and local-
ization. PRN learns residual resentations across multi-scale
feature maps and within multi-size receptive fields at each
scale, enabling accurate detection and localization of anoma-
lous regions that come in a variety of sizes, shapes and
numbers. In addition, we propose various anomaly gener-
ation strategies to expand and diversify the anomalies. We
conduct in-depth experiments on four popular datasets to con-
firm the effectiveness and generalizability of our approach.
PRN achieves new SOTA on anomaly detection and and
significantly surpasses previous arts in anomaly localization
performance.

Limitations. Our approach requires the dataset to pro-
vide accurate ground truth masks for anomalies. Using a
single image-level anomaly average score for anomalous
images with different defect sizes does not favor tiny defects.
We leave this intriguing extension to future work.
Acknowledgement This project was supported by NSFC
under Grant No. 62102092 and No. 62032006.

Input GT PatchCoreDRAEM Ours Input GT PatchCoreDRAEM Ours Input GT PatchCoreDRAEM Ours

Figure 6. Qualitative examples on MVTec [4]. PRN achieves more accurate localization results for various types of anomalies.

Anomaly Generation Performance

EA HEA HOA TA I " P " O " A "
X X 98.6 97.2 93.4 75.7
X X X 99.1 98.4 95.4 77.4
X X X 98.6 98.4 95.7 75.2

X X X 98.7 98.2 95.1 73.4
X X X 98.4 98.4 94.9 77.6
X X X X 99.4 99.0 96.1 78.6

Table 5. Ablations of anomaly generation strategies.

I " P " O " A " T #
PRN5% 99.2 98.6 95.4 78.1 0.063

PRN10% 99.4 99.0 96.1 78.6 0.064
PRN20% 99.2 98.8 95.7 77.3 0.066
PRN100% 86.2 91.4 75.4 49.9 0.074

Table 6. Ablations of the ratio of prototypes to total normal samples.

DevNet [35] DRA [13] PRN(Ours)

I " P " O " A " I " P " O " A " I " P " O " A "
1 79.6 75.3 51.0 16.5 88.9 78.8 58.2 19.1 98.8 98.3 95.4 74.7
5 86.7 83.7 66.9 22.7 93.5 82.8 68.6 21.9 99.2 98.6 95.6 76.4
10 92.2 85.3 71.4 24.4 96.1 85.3 73.3 26.0 99.4 99.0 96.1 78.6

Table 7. Impact of the number of seen anomalies used.

few prototypes lead to insufficient discrimination between
prototypes, resulting in inferior performance. The results
indicate that a proportion of 10% produces the optimum
performance. In addition, using fewer prototypes can speed
up inference.

Effects of the number of seen anomalies used. As
shown in Table 7, we explore the impact of the number
of anomalies used. Our approach significantly outperforms
Devnet [35] and DRA [13] using different numbers of seen
anomalies, which demonstrates the effectiveness of our pro-
posed anomaly generation strategies and the robustness of
PRN to datasets of different levels of imbalance.

4.4. Evaluation on other benchmarks

To further evaluate the anomaly detection and localization
capabilities of PRN, we benchmark PRN on three additional

DAGM [61] BTAD [34] KolektorSDD2 [7]

I " P " O " A " I " P " O " A " I " P " O " A "
DRAEM 91.1 83.4 70.5 35.6 89.0 87.1 61.6 19.2 81.1 85.6 67.9 39.1
CFLOW 91.2 95.1 87.6 45.2 90.5 96.1 71.6 54.0 95.2 97.4 93.8 46.0
SSPCAB 90.4 84.5 71.9 33.9 88.3 83.5 54.1 13.0 83.4 86.2 66.1 44.5
RD4AD 90.7 94.1 85.5 40.8 94.4 96.9 75.8 53.5 96.0 97.6 94.7 43.5
PatchCore 92.5 96.1 88.0 49.0 92.6 96.9 76.3 51.5 94.6 97.1 89.3 49.8
DRA 93.5 95.1 88.8 47.6 94.2 75.4 56.2 12.4 86.8 84.4 56.9 3.6
Ours 98.2 96.6 93.8 49.4 94.7 97.1 78.0 54.0 96.4 97.6 94.9 72.5

Table 8. Comparison of PRN with other approaches on DAGM,
BTAD, and KolektorSDD2.

widely used datasets, namely DAGM [61], BTAD [34] and
KolektorSDD2 [7]. As shown in Table 8, PRN achieves
new SOTA performance on all three datasets, proving its
effectiveness and generalization. Results for more detailed
comparisons and some qualitative examples are provided in
the supplementary material.

5. Conclusion
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ation strategies to expand and diversify the anomalies. We
conduct in-depth experiments on four popular datasets to con-
firm the effectiveness and generalizability of our approach.
PRN achieves new SOTA on anomaly detection and and
significantly surpasses previous arts in anomaly localization
performance.
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Category Unsupervised Supervised

KDAD CFLOW DRAEM SSPCAB CFA RD4AD PatchCore DevNet DRA Ours

Carpet 80.3/95.5 97.6/99.2 96.9/97.5 93.1/92.6 99.3/98.6 98.7/98.9 99.1/99.0 82.5/97.2 92.5/98.2 99.7/99.0
Grid 75.3/89.4 98.1/98.9 99.9/99.7 99.7/99.5 98.6/97.6 100/98.3 97.3/98.7 90.6/87.9 98.6/86.0 99.4/98.4
Leather 92.3/98.1 99.9/99.7 100/99.0 98.7/96.3 100/99.1 100/99.4 100/99.3 92.2/94.2 98.9/93.8 100/99.7

Tile 91.5/80.2 97.1/96.2 100/99.2 100/99.4 99.2/95.1 99.7/95.7 99.3/95.8 99.9/92.7 100/92.3 100/99.6

Wood 94.5/85.3 98.7/86.0 99.5/95.5 98.4/96.5 100/94.7 99.5/95.8 99.6/95.1 97.9/86.4 99.1/82.9 100/97.8

Bottle 99.2/95.7 99.9/97.2 98.0/99.1 95.6/99.2 100/98.6 100/98.8 100/98.6 99.7/93.9 100/91.3 100/99.4

Cable 90.3/80.2 97.6/97.8 90.9/95.2 92.7/95.1 99.9/98.8 96.1/97.2 99.9/98.5 98.7/88.8 94.2/86.6 98.9/98.8

Capsule 81.4/95.2 97.0/99.1 91.3/88.1 96.9/90.2 97.4/98.4 96.1/98.7 98.0/99.0 71.9/91.8 95.1/89.3 98.0/98.5
Hazelnut 98.8/95.0 100/98.8 100/99.7 100/99.7 100/98.6 100/99.0 100/98.7 99.7/91.1 100/89.6 100/99.7

Metal Nut 77.1/83.3 98.5/98.6 100/99.6 100/99.4 100/98.7 100/97.3 99.9/98.3 98.8/77.8 99.1/79.5 100/99.7

Pill 84.4/89.9 96.2/98.9 97.1/97.3 97.4/97.2 97.7/98.0 98.7/98.1 97.5/97.6 87.1/82.6 88.3/84.5 99.3/99.5

Screw 82.4/95.8 93.1/98.9 98.7/99.3 97.8/99.0 95.1/98.3 97.8/99.7 98.2/99.5 97.2/60.3 99.5/54.0 95.9/97.5
Toothbrush 97.1/95.5 98.8/99.0 100/97.3 97.9/97.3 100/98.8 100/99.1 100/98.6 79.2/84.6 87.5/75.5 100/99.6

Transistor 84.9/75.9 92.9/98.2 91.7/85.2 88.0/84.8 100/98.1 95.5/92.3 99.9/96.5 89.1/56.0 88.3/79.1 99.7/98.4

Zipper 93.7/95.3 97.1/99.1 100/99.1 100/98.4 99.5/98.6 97.9/98.3 99.5/98.9 99.1/93.7 99.7/96.9 99.7/98.8

Average 88.2/90.0 97.5/97.7 97.6/96.7 97.1/96.3 99.1/98.0 98.7/97.8 99.2/98.1 92.2/85.3 96.1/85.3 99.4/99.0

Table 5. Anomaly Detection and Localization on MVTec. Best results on Image AUROC or Pixel AUROC are highlighted in bold.

MVTec DAGM BTAD KolektorSDD2

I " P " O " A " I " P " O " A " I " P " O " A " I " P " O " A "
DRAEM 97.6 96.7 91.3 68.1 91.1 83.4 70.5 35.6 89.0 87.1 61.6 19.2 81.1 85.6 67.9 39.1
CFLOW 97.5 97.7 93.4 59.6 91.2 95.1 87.6 45.2 90.5 96.1 71.6 54.0 95.2 97.4 93.8 46.0
SSPCAB 97.1 96.3 90.8 65.5 90.4 84.5 71.9 33.9 88.3 83.5 54.1 13.0 83.4 86.2 66.1 44.5
RD4AD 98.7 97.8 93.9 55.4 90.7 94.1 85.5 40.8 94.4 96.9 75.8 53.5 96.0 97.6 94.7 43.5
PatchCore 99.2 98.1 93.9 56.3 92.5 96.1 88.0 49.0 92.6 96.9 76.3 51.5 94.6 97.1 89.3 49.8
DRA 96.1 85.3 73.3 26.0 93.5 95.1 88.8 47.6 94.2 75.4 56.2 12.4 86.8 84.4 56.9 3.6

Ours 99.4 99.0 96.1 78.6 98.2 96.6 93.8 49.4 94.7 97.1 78.0 54.0 96.4 97.6 94.9 72.5

Table 6. PRN outperforms current SOTA on four datasets. “I”, “P”, “O”, “A” and “T” respectively refer to the five metrics of image auroc,
pixel auroc, pixel pro, pixel ap, and inference time per image.

A - augmented anomaly
R - augmented anomaly region

M - the mask of anomaly

𝛽 - opacity parameter
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Background 4

Anomaly detection and localization are widely used in industrial 
manufacturing for its efficiency and effectiveness.

Normal

Abnormal



Motivation 5

Difficulties & dominant paradigms

v Imbalanced learning
v Identifying abnormal regions
v Appearance variations

Good performance Implicit decisions Real-world Label bias

Unsupervised Supervised



Contribution 5

We propose a framework called Prototypical Residual Network (PRN) as 
an effective remedy for aforesaid issues.

Ø PRN learns feature residuals of varying scales and 
sizes between anomalous and normal patterns, 
aiming to address identifying abnormal regions 
and appearance variations.

Ø We propose various anomaly-generation strategies 
to address imbalanced learning.

Ø PRN outperforms current SOTA on four datasets.
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Figure 5. Generating extended anomalies. The anomalous region is
augmented by random augmentation and placed on a target area of
the normal sample to generate various anomalies online.

in-distribution anomalies by placing augmented anomalous
regions from seen anomalies on normal samples, and these
generated anomalies are named extended anomalies (EA).
EA enlarge the amount of anomalies and mitigate the data
imbalance problem. Another strategy is to create out-of-
distribution anomalies [68] using normal samples without
knowledge of the seen anomalies. These generated anoma-
lies are named simulated anomalies (SA) , which supplement
potential unseen anomalies.

Extended Anomalies. Instead of simply augmenting
the entire image from the seen anomalies, we augment the
specific anomalous regions of the seen anomalies and place
them at any possible position within the normal sample. First,
augmentations (Fig. 5, Aug1) are applied to a randomly se-
lected anomaly from the seen anomalies in order to generate
color varieties (Fig. 5, A). Aug1 takes two random opera-
tions from { equalize, solarize, posterize, sharpness, auto-
contrast, invert, gamma-contrast }. After that, we argument
the selected anomaly with random spatial transformations as
{ rotate, shear, shift } to obtain position and shape varieties
(Fig. 5, R). Since the extended anomalies should be as real-
istic and reasonable as possible, we propose a soft position
constrain to place R in the foreground. More specifically,
Target Areas (TA) is used to refer to areas where anomalies
can be placed. We crop R, using a randomly sampled target
area, to obtain clipped anomaly region (Fig. 5, C). If R has
no overlap with the target region, we perform Aug2 again
until R has overlap with the target region. We binarized C
to obtain the ground truth mask (Fig. 5, M ). The proposed
extended anomalies (Fig. 5, E) is therefore defined as:

E = M̄ � N + (1 � �)C + � (M � N) (4)

where M̄ is the inverse of M , � is the element-wise mul-
tiplication operation, � is the opacity parameter [68] for
better combination of abnormal and normal parts. For object
datasets and texture datasets, the target areas are part of the
foreground of the object and part of the whole image, re-
spectively. The shapes of the target are the set of geometries:
{circle, rectangular, polygonal}.

Simulated Anomalies. Similar to DRAEM [68], we

multiply Perlin [37] noise with random textures from the
DTD [8] dataset and apply these augmented textures to nor-
mal images. As these anomalies significantly differs from the
seen anomalies, we refer to these out-of-distribution anoma-
lies as heterologous anomalies (HEA). To further expand
the diversity of simulated anomalies, we introduce homol-
ogous anomalies (HOA), in which anomalies multiplied by
the Perlin noise are augmented normal images. Note that
the TA mentioned above is also applied to the generation of
simulated anomalies. More details about HEA and HOA are
presented in the supplementary materials.

3.5. Training and Inference

The decoder of PRN outputs an anomaly score map Mo,
which is of the same shape as the ground truth mask M.
Inspired by [68] and [63] , a focal loss [29] and a smooth
L1 loss [14] are applied to increase the robustness toward
accurate segmentation of hard examples and reduce the over-
sensitivity to outliers, respectively. Thus, the total loss Ltotal

used for training PRN is defined as

Ltotal = SmoothL1 (Mo, M) + �Lfocal (Mo, M) (5)

When the predicted Mo is accurate and sufficiently close
to M, Mo can be interpreted not only as the pixel-level
anomaly localization result, but also as an image-level
anomaly estimation for anomaly detection. Specifically, we
take the average of the top-K anomalous pixels as the image-
level anomaly score for anomaly detection. In a preliminary
study, we trained a classification network based on Mo for
image-level anomaly detection, but did not observe an im-
provement over top-K estimation.

4. Experiments

4.1. Experimental Details

Datasets. To validate the effectiveness and generaliz-
ability of our approach, we perform experiments on var-
ious datasets, i.e., MVTec Anomaly Detection (MVTec
AD [4]), DAGM [61], BeanTech anomaly detection dataset
(BTAD [34]), and KolektorSDD2 [7]. There are 10 object
sub-datasets and 5 texture sub-datasets in MVTec AD. Each
sub-dataset presents a diverse set of anomalies, which en-
ables a general evaluation of surface anomaly detection meth-
ods. DAGM contains 10 textured objects with small abnor-
mal regions that are visually very similar to the background.
BTAD includes three categories of real-world industrial prod-
ucts showcasing different body and surface defects. Kolek-
torSDD2 is a dataset of surface defects that vary in shape,
size, and color, from small scratches and spots to large sur-
face defects. We adopt the general supervised setting [13,35],
where the training set of each sub-dataset contains only 10
abnormal samples. More details will be provided in the sup-
plementary materials.
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Figure 5. Generating extended anomalies. The anomalous region is
augmented by random augmentation and placed on a target area of
the normal sample to generate various anomalies online.

in-distribution anomalies by placing augmented anomalous
regions from seen anomalies on normal samples, and these
generated anomalies are named extended anomalies (EA).
EA enlarge the amount of anomalies and mitigate the data
imbalance problem. Another strategy is to create out-of-
distribution anomalies [68] using normal samples without
knowledge of the seen anomalies. These generated anoma-
lies are named simulated anomalies (SA) , which supplement
potential unseen anomalies.

Extended Anomalies. Instead of simply augmenting
the entire image from the seen anomalies, we augment the
specific anomalous regions of the seen anomalies and place
them at any possible position within the normal sample. First,
augmentations (Fig. 5, Aug1) are applied to a randomly se-
lected anomaly from the seen anomalies in order to generate
color varieties (Fig. 5, A). Aug1 takes two random opera-
tions from { equalize, solarize, posterize, sharpness, auto-
contrast, invert, gamma-contrast }. After that, we argument
the selected anomaly with random spatial transformations as
{ rotate, shear, shift } to obtain position and shape varieties
(Fig. 5, R). Since the extended anomalies should be as real-
istic and reasonable as possible, we propose a soft position
constrain to place R in the foreground. More specifically,
Target Areas (TA) is used to refer to areas where anomalies
can be placed. We crop R, using a randomly sampled target
area, to obtain clipped anomaly region (Fig. 5, C). If R has
no overlap with the target region, we perform Aug2 again
until R has overlap with the target region. We binarized C
to obtain the ground truth mask (Fig. 5, M ). The proposed
extended anomalies (Fig. 5, E) is therefore defined as:

E = M̄ � N + (1 � �)C + � (M � N) (4)

where M̄ is the inverse of M , � is the element-wise mul-
tiplication operation, � is the opacity parameter [68] for
better combination of abnormal and normal parts. For object
datasets and texture datasets, the target areas are part of the
foreground of the object and part of the whole image, re-
spectively. The shapes of the target are the set of geometries:
{circle, rectangular, polygonal}.

Simulated Anomalies. Similar to DRAEM [68], we

multiply Perlin [37] noise with random textures from the
DTD [8] dataset and apply these augmented textures to nor-
mal images. As these anomalies significantly differs from the
seen anomalies, we refer to these out-of-distribution anoma-
lies as heterologous anomalies (HEA). To further expand
the diversity of simulated anomalies, we introduce homol-
ogous anomalies (HOA), in which anomalies multiplied by
the Perlin noise are augmented normal images. Note that
the TA mentioned above is also applied to the generation of
simulated anomalies. More details about HEA and HOA are
presented in the supplementary materials.

3.5. Training and Inference

The decoder of PRN outputs an anomaly score map Mo,
which is of the same shape as the ground truth mask M.
Inspired by [68] and [63] , a focal loss [29] and a smooth
L1 loss [14] are applied to increase the robustness toward
accurate segmentation of hard examples and reduce the over-
sensitivity to outliers, respectively. Thus, the total loss Ltotal

used for training PRN is defined as

Ltotal = SmoothL1 (Mo, M) + �Lfocal (Mo, M) (5)

When the predicted Mo is accurate and sufficiently close
to M, Mo can be interpreted not only as the pixel-level
anomaly localization result, but also as an image-level
anomaly estimation for anomaly detection. Specifically, we
take the average of the top-K anomalous pixels as the image-
level anomaly score for anomaly detection. In a preliminary
study, we trained a classification network based on Mo for
image-level anomaly detection, but did not observe an im-
provement over top-K estimation.

4. Experiments

4.1. Experimental Details

Datasets. To validate the effectiveness and generaliz-
ability of our approach, we perform experiments on var-
ious datasets, i.e., MVTec Anomaly Detection (MVTec
AD [4]), DAGM [61], BeanTech anomaly detection dataset
(BTAD [34]), and KolektorSDD2 [7]. There are 10 object
sub-datasets and 5 texture sub-datasets in MVTec AD. Each
sub-dataset presents a diverse set of anomalies, which en-
ables a general evaluation of surface anomaly detection meth-
ods. DAGM contains 10 textured objects with small abnor-
mal regions that are visually very similar to the background.
BTAD includes three categories of real-world industrial prod-
ucts showcasing different body and surface defects. Kolek-
torSDD2 is a dataset of surface defects that vary in shape,
size, and color, from small scratches and spots to large sur-
face defects. We adopt the general supervised setting [13,35],
where the training set of each sub-dataset contains only 10
abnormal samples. More details will be provided in the sup-
plementary materials.
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Numerical and visualization results

Input GT PatchCoreDRAEM Ours Input GT PatchCoreDRAEM Ours Input GT PatchCoreDRAEM Ours

Figure 6. Qualitative examples on MVTec [4]. PRN achieves more accurate localization results for various types of anomalies.

Anomaly Generation Performance

EA HEA HOA TA I " P " O " A "
X X 98.6 97.2 93.4 75.7
X X X 99.1 98.4 95.4 77.4
X X X 98.6 98.4 95.7 75.2

X X X 98.7 98.2 95.1 73.4
X X X 98.4 98.4 94.9 77.6
X X X X 99.4 99.0 96.1 78.6

Table 5. Ablations of anomaly generation strategies.

I " P " O " A " T #
PRN5% 99.2 98.6 95.4 78.1 0.063

PRN10% 99.4 99.0 96.1 78.6 0.064
PRN20% 99.2 98.8 95.7 77.3 0.066
PRN100% 86.2 91.4 75.4 49.9 0.074

Table 6. Ablations of the ratio of prototypes to total normal samples.

DevNet [35] DRA [13] PRN(Ours)

I " P " O " A " I " P " O " A " I " P " O " A "
1 79.6 75.3 51.0 16.5 88.9 78.8 58.2 19.1 98.8 98.3 95.4 74.7
5 86.7 83.7 66.9 22.7 93.5 82.8 68.6 21.9 99.2 98.6 95.6 76.4
10 92.2 85.3 71.4 24.4 96.1 85.3 73.3 26.0 99.4 99.0 96.1 78.6

Table 7. Impact of the number of seen anomalies used.

few prototypes lead to insufficient discrimination between
prototypes, resulting in inferior performance. The results
indicate that a proportion of 10% produces the optimum
performance. In addition, using fewer prototypes can speed
up inference.

Effects of the number of seen anomalies used. As
shown in Table 7, we explore the impact of the number
of anomalies used. Our approach significantly outperforms
Devnet [35] and DRA [13] using different numbers of seen
anomalies, which demonstrates the effectiveness of our pro-
posed anomaly generation strategies and the robustness of
PRN to datasets of different levels of imbalance.

4.4. Evaluation on other benchmarks

To further evaluate the anomaly detection and localization
capabilities of PRN, we benchmark PRN on three additional

DAGM [61] BTAD [34] KolektorSDD2 [7]

I " P " O " A " I " P " O " A " I " P " O " A "
DRAEM 91.1 83.4 70.5 35.6 89.0 87.1 61.6 19.2 81.1 85.6 67.9 39.1
CFLOW 91.2 95.1 87.6 45.2 90.5 96.1 71.6 54.0 95.2 97.4 93.8 46.0
SSPCAB 90.4 84.5 71.9 33.9 88.3 83.5 54.1 13.0 83.4 86.2 66.1 44.5
RD4AD 90.7 94.1 85.5 40.8 94.4 96.9 75.8 53.5 96.0 97.6 94.7 43.5
PatchCore 92.5 96.1 88.0 49.0 92.6 96.9 76.3 51.5 94.6 97.1 89.3 49.8
DRA 93.5 95.1 88.8 47.6 94.2 75.4 56.2 12.4 86.8 84.4 56.9 3.6
Ours 98.2 96.6 93.8 49.4 94.7 97.1 78.0 54.0 96.4 97.6 94.9 72.5

Table 8. Comparison of PRN with other approaches on DAGM,
BTAD, and KolektorSDD2.

widely used datasets, namely DAGM [61], BTAD [34] and
KolektorSDD2 [7]. As shown in Table 8, PRN achieves
new SOTA performance on all three datasets, proving its
effectiveness and generalization. Results for more detailed
comparisons and some qualitative examples are provided in
the supplementary material.

5. Conclusion

In this paper, we proposed a novel framework called Pro-
totypical Residual Network for anomaly detection and local-
ization. PRN learns residual resentations across multi-scale
feature maps and within multi-size receptive fields at each
scale, enabling accurate detection and localization of anoma-
lous regions that come in a variety of sizes, shapes and
numbers. In addition, we propose various anomaly gener-
ation strategies to expand and diversify the anomalies. We
conduct in-depth experiments on four popular datasets to con-
firm the effectiveness and generalizability of our approach.
PRN achieves new SOTA on anomaly detection and and
significantly surpasses previous arts in anomaly localization
performance.

Limitations. Our approach requires the dataset to pro-
vide accurate ground truth masks for anomalies. Using a
single image-level anomaly average score for anomalous
images with different defect sizes does not favor tiny defects.
We leave this intriguing extension to future work.
Acknowledgement This project was supported by NSFC
under Grant No. 62102092 and No. 62032006.
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Category Unsupervised Supervised

KDAD CFLOW DRAEM SSPCAB CFA RD4AD PatchCore DevNet DRA Ours

Carpet 80.3/95.5 97.6/99.2 96.9/97.5 93.1/92.6 99.3/98.6 98.7/98.9 99.1/99.0 82.5/97.2 92.5/98.2 99.7/99.0
Grid 75.3/89.4 98.1/98.9 99.9/99.7 99.7/99.5 98.6/97.6 100/98.3 97.3/98.7 90.6/87.9 98.6/86.0 99.4/98.4
Leather 92.3/98.1 99.9/99.7 100/99.0 98.7/96.3 100/99.1 100/99.4 100/99.3 92.2/94.2 98.9/93.8 100/99.7

Tile 91.5/80.2 97.1/96.2 100/99.2 100/99.4 99.2/95.1 99.7/95.7 99.3/95.8 99.9/92.7 100/92.3 100/99.6

Wood 94.5/85.3 98.7/86.0 99.5/95.5 98.4/96.5 100/94.7 99.5/95.8 99.6/95.1 97.9/86.4 99.1/82.9 100/97.8

Bottle 99.2/95.7 99.9/97.2 98.0/99.1 95.6/99.2 100/98.6 100/98.8 100/98.6 99.7/93.9 100/91.3 100/99.4

Cable 90.3/80.2 97.6/97.8 90.9/95.2 92.7/95.1 99.9/98.8 96.1/97.2 99.9/98.5 98.7/88.8 94.2/86.6 98.9/98.8

Capsule 81.4/95.2 97.0/99.1 91.3/88.1 96.9/90.2 97.4/98.4 96.1/98.7 98.0/99.0 71.9/91.8 95.1/89.3 98.0/98.5
Hazelnut 98.8/95.0 100/98.8 100/99.7 100/99.7 100/98.6 100/99.0 100/98.7 99.7/91.1 100/89.6 100/99.7

Metal Nut 77.1/83.3 98.5/98.6 100/99.6 100/99.4 100/98.7 100/97.3 99.9/98.3 98.8/77.8 99.1/79.5 100/99.7

Pill 84.4/89.9 96.2/98.9 97.1/97.3 97.4/97.2 97.7/98.0 98.7/98.1 97.5/97.6 87.1/82.6 88.3/84.5 99.3/99.5

Screw 82.4/95.8 93.1/98.9 98.7/99.3 97.8/99.0 95.1/98.3 97.8/99.7 98.2/99.5 97.2/60.3 99.5/54.0 95.9/97.5
Toothbrush 97.1/95.5 98.8/99.0 100/97.3 97.9/97.3 100/98.8 100/99.1 100/98.6 79.2/84.6 87.5/75.5 100/99.6

Transistor 84.9/75.9 92.9/98.2 91.7/85.2 88.0/84.8 100/98.1 95.5/92.3 99.9/96.5 89.1/56.0 88.3/79.1 99.7/98.4

Zipper 93.7/95.3 97.1/99.1 100/99.1 100/98.4 99.5/98.6 97.9/98.3 99.5/98.9 99.1/93.7 99.7/96.9 99.7/98.8

Average 88.2/90.0 97.5/97.7 97.6/96.7 97.1/96.3 99.1/98.0 98.7/97.8 99.2/98.1 92.2/85.3 96.1/85.3 99.4/99.0

Table 5. Anomaly Detection and Localization on MVTec. Best results on Image AUROC or Pixel AUROC are highlighted in bold.

MVTec DAGM BTAD KolektorSDD2

I " P " O " A " I " P " O " A " I " P " O " A " I " P " O " A "
DRAEM 97.6 96.7 91.3 68.1 91.1 83.4 70.5 35.6 89.0 87.1 61.6 19.2 81.1 85.6 67.9 39.1
CFLOW 97.5 97.7 93.4 59.6 91.2 95.1 87.6 45.2 90.5 96.1 71.6 54.0 95.2 97.4 93.8 46.0
SSPCAB 97.1 96.3 90.8 65.5 90.4 84.5 71.9 33.9 88.3 83.5 54.1 13.0 83.4 86.2 66.1 44.5
RD4AD 98.7 97.8 93.9 55.4 90.7 94.1 85.5 40.8 94.4 96.9 75.8 53.5 96.0 97.6 94.7 43.5
PatchCore 99.2 98.1 93.9 56.3 92.5 96.1 88.0 49.0 92.6 96.9 76.3 51.5 94.6 97.1 89.3 49.8
DRA 96.1 85.3 73.3 26.0 93.5 95.1 88.8 47.6 94.2 75.4 56.2 12.4 86.8 84.4 56.9 3.6

Ours 99.4 99.0 96.1 78.6 98.2 96.6 93.8 49.4 94.7 97.1 78.0 54.0 96.4 97.6 94.9 72.5

Table 6. PRN outperforms current SOTA on four datasets. “I”, “P”, “O”, “A” and “T” respectively refer to the five metrics of image auroc,
pixel auroc, pixel pro, pixel ap, and inference time per image.
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Ablation Study

Category Unsupervised Supervised

KDAD [47] CFLOW [18] DRAEM [68] SSPCAB [39] CFA [25] RD4AD [12] PatchCore [41] DevNet [35] DRA [13] Ours

Carpet 92.5/45.6 97.6/68.3 92.9/65.1 86.4/48.6 93.6/57.2 95.4/56.5 95.5/62.2 85.8/45.7 92.2/52.3 97.0/82.0

Grid 72.9/7.3 96.0/41.2 98.3/62.8 98.0/57.9 92.9/25.8 94.2/15.8 94.0/24.5 79.8/25.5 71.5/26.8 95.9/45.7
Leather 97.5/26.8 99.2/64.5 97.4/72.9 94.0/60.7 95.4/48.5 98.2/47.6 96.9/45.3 88.5/8.1 84.0/5.6 99.2/69.7
Tile 74.3/27.7 89.1/60.1 98.2/95.2 98.1/96.1 83.3/55.9 85.6/54.1 91.3/56.2 78.9/52.3 81.5/57.6 98.2/96.5

Wood 76.5/24.3 82.8/29.0 90.3/74.6 92.8/78.9 85.9/49.0 91.4/48.3 87.1/49.3 75.4/25.1 69.7/22.7 95.9/82.6

Bottle 88.6/54.8 94.0/68.1 96.8/88.9 96.3/89.4 94.6/80.3 96.3/78.0 95.4/76.8 83.5/51.5 77.6/41.2 97.0/92.3

Cable 66.2/12.6 94.1/60.6 81.0/56.4 80.4/52.0 91.7/74.7 94.1/52.6 96.8/67.0 80.9/36.0 77.7/34.7 97.2/78.9

Capsule 90.1/10.1 94.0/48.8 82.7/39.6 92.5/46.4 93.0/48.3 95.5/47.2 93.4/46.0 83.6/15.5 79.1/11.7 92.5/62.2

Hazelnut 94.3/34.2 97.1/59.9 98.5/92.6 98.2/93.4 95.2/60.0 96.9/60.7 90.9/53.2 83.6/22.1 86.9/22.5 97.4/93.8

Metal Nut 76.9/34.1 91.5/88.0 97.0/97.0 97.7/94.7 91.4/92.2 94.9/78.6 92.6/86.6 76.9/35.6 76.7/29.9 95.8/98.0

Pill 86.4/20.9 95.2/82.0 88.4/47.6 89.6/48.3 95.4/81.9 96.7/76.5 94.5/75.7 69.2/14.6 77.0/21.6 97.2/91.3

Screw 85.2/6.1 95.8/43.9 95.0/66.5 95.2/61.7 93.5/28.7 98.5/52.1 97.5/34.7 31.1/1.4 30.1/5.0 92.4/44.9
Toothbrush 87.3/18.3 95.3/46.3 85.6/45.5 85.5/39.3 86.8/55.7 92.3/51.1 94.0/37.9 33.5/6.7 56.1/4.5 95.6/78.1

Transistor 68.1/25.8 82.5/67.5 70.4/39.0 62.5/38.1 95.1/76.2 83.3/54.1 92.3/66.9 39.1/6.4 49.0/11.0 94.8/85.6

Zipper 86.5/31.5 96.6/65.2 96.8/77.6 95.2/76.4 94.3/65.2 95.3/57.5 96.1/62.3 81.3/19.6 91.0/42.9 95.5/77.6

Total Average 82.9/25.34 93.4/59.6 91.3/68.1 90.8/65.5 92.1/60.0 93.9/55.4 93.9/56.3 71.4/24.4 73.3/26.0 96.1/78.6

Table 2. Results of the PRO and AP metrics for anomaly localization performance on MVTec [4].

Backbone I " P " O " A " T #
CFLOW

WResNet50
97.5 97.7 93.4 59.6 0.127

RD4AD 98.7 97.8 93.9 55.4 0.094
PatchCore 99.2 98.1 93.9 56.3 0.133

CFLOW

ResNet18

96.2 98.1 92.8 59.2 0.106
RD4AD 97.9 97.1 92.7 53.7 0.076
DRA 96.1 84.1 71.5 25.7 0.223
PRN(Ours) 99.4 99.0 96.1 78.6 0.064

Table 3. Comparison of pre-trained based approaches in terms of
performance and inference time (second) on MVTec [4]. “I”, “P”,
“O”, “A” and “T” respectively refer to the five metrics of image
auroc, pixel auroc, pixel pro, pixel ap, and inference time per image.

standard. Our approach not only gains the best performance,
but also significantly reduces the inference time.

We qualitatively evaluate the performance of anomaly
localization compared to state-of-the-art methods DRAEM
[68] and PatchCore [41] by visualizing the results in Fig. 6.
Our model accurately locates the anomalies and clearly focus
on all anomalous regions, regardless of their sizes, shapes
and numbers. Additional qualitative results are provided in
the supplementary material.

4.3. Ablation Study

The importance of MP, MSA and MF. We investigate
the importance of each modules in PRN and the results are
reported in Table 4. We have the U-Net-like architecture
without any module on the skip-connection branch as the
baseline. Overall, PRN outperforms the baseline by a large
margin, especially on the P, O, and A metrics. All metrics
are significantly boosted by employing the MP that performs
explicit residual representation. When applying the MSA
which performs variable-sized anomalous feature learning,
the performance is further improved. This confirms the effec-
tiveness of information exchanging across multi-size recep-
tive fields. Finally, removing the MF causing the degradation

Module Performance

U-Net MP MSA MF I " P " O " A "
X 97.4 91.7 88.6 58.5
X X X 98.9 98.5 95.3 77.0
X X X 97.8 97.0 92.1 74.0
X X X 98.7 98.5 95.4 78.1
X X X X 99.4 99.0 96.1 78.6

Table 4. Ablations of different modules in PRN.

of performance, indicates that it is necessary to exchange
information across different scales.

Effects of different anomaly generation strategies. We
perform ablation studies to investigate the impact of the
different components of the proposed anomaly generation
strategies in Table 5. The proposed EA alleviates the prob-
lem of seen appearance variance, but does not adequately
explore the underlying unseen anomalies. Table 5 indicates
that the performance of the model increases with the vari-
ety of generated anomalies. We argue that the proposed SA
consisting of both HEA and HOA can generate anomalies
of various sizes, shapes and numbers, allowing our model
to generalize to unseen anomalies. Besides, the proposed
TA imposes soft constraints on the locations where anomaly
regions are imposed, making the generated anomalies as real-
istic and reasonable as possible, thus significantly improving
the performance of the model.

The effect of prototype proportion. The effect of the
ratio of prototypes to total normal samples is compared in
Table 6. Note that 100% means that no clustering is per-
formed. Each feature map of a normal sample is regarded
as a prototype and the number of prototypes is equal to the
number of normal samples. The poor performance of the
PRN100% indicates that the residual representation obtained
from the closest cluster prototype is more representative than
that obtained from the single closest sample. Besides, too

Input GT PatchCoreDRAEM Ours Input GT PatchCoreDRAEM Ours Input GT PatchCoreDRAEM Ours

Figure 6. Qualitative examples on MVTec [4]. PRN achieves more accurate localization results for various types of anomalies.

Anomaly Generation Performance

EA HEA HOA TA I " P " O " A "
X X 98.6 97.2 93.4 75.7
X X X 99.1 98.4 95.4 77.4
X X X 98.6 98.4 95.7 75.2

X X X 98.7 98.2 95.1 73.4
X X X 98.4 98.4 94.9 77.6
X X X X 99.4 99.0 96.1 78.6

Table 5. Ablations of anomaly generation strategies.

I " P " O " A " T #
PRN5% 99.2 98.6 95.4 78.1 0.063

PRN10% 99.4 99.0 96.1 78.6 0.064
PRN20% 99.2 98.8 95.7 77.3 0.066
PRN100% 86.2 91.4 75.4 49.9 0.074

Table 6. Ablations of the ratio of prototypes to total normal samples.

DevNet [35] DRA [13] PRN(Ours)

I " P " O " A " I " P " O " A " I " P " O " A "
1 79.6 75.3 51.0 16.5 88.9 78.8 58.2 19.1 98.8 98.3 95.4 74.7
5 86.7 83.7 66.9 22.7 93.5 82.8 68.6 21.9 99.2 98.6 95.6 76.4
10 92.2 85.3 71.4 24.4 96.1 85.3 73.3 26.0 99.4 99.0 96.1 78.6

Table 7. Impact of the number of seen anomalies used.

few prototypes lead to insufficient discrimination between
prototypes, resulting in inferior performance. The results
indicate that a proportion of 10% produces the optimum
performance. In addition, using fewer prototypes can speed
up inference.

Effects of the number of seen anomalies used. As
shown in Table 7, we explore the impact of the number
of anomalies used. Our approach significantly outperforms
Devnet [35] and DRA [13] using different numbers of seen
anomalies, which demonstrates the effectiveness of our pro-
posed anomaly generation strategies and the robustness of
PRN to datasets of different levels of imbalance.

4.4. Evaluation on other benchmarks

To further evaluate the anomaly detection and localization
capabilities of PRN, we benchmark PRN on three additional

DAGM [61] BTAD [34] KolektorSDD2 [7]

I " P " O " A " I " P " O " A " I " P " O " A "
DRAEM 91.1 83.4 70.5 35.6 89.0 87.1 61.6 19.2 81.1 85.6 67.9 39.1
CFLOW 91.2 95.1 87.6 45.2 90.5 96.1 71.6 54.0 95.2 97.4 93.8 46.0
SSPCAB 90.4 84.5 71.9 33.9 88.3 83.5 54.1 13.0 83.4 86.2 66.1 44.5
RD4AD 90.7 94.1 85.5 40.8 94.4 96.9 75.8 53.5 96.0 97.6 94.7 43.5
PatchCore 92.5 96.1 88.0 49.0 92.6 96.9 76.3 51.5 94.6 97.1 89.3 49.8
DRA 93.5 95.1 88.8 47.6 94.2 75.4 56.2 12.4 86.8 84.4 56.9 3.6
Ours 98.2 96.6 93.8 49.4 94.7 97.1 78.0 54.0 96.4 97.6 94.9 72.5

Table 8. Comparison of PRN with other approaches on DAGM,
BTAD, and KolektorSDD2.

widely used datasets, namely DAGM [61], BTAD [34] and
KolektorSDD2 [7]. As shown in Table 8, PRN achieves
new SOTA performance on all three datasets, proving its
effectiveness and generalization. Results for more detailed
comparisons and some qualitative examples are provided in
the supplementary material.

5. Conclusion

In this paper, we proposed a novel framework called Pro-
totypical Residual Network for anomaly detection and local-
ization. PRN learns residual resentations across multi-scale
feature maps and within multi-size receptive fields at each
scale, enabling accurate detection and localization of anoma-
lous regions that come in a variety of sizes, shapes and
numbers. In addition, we propose various anomaly gener-
ation strategies to expand and diversify the anomalies. We
conduct in-depth experiments on four popular datasets to con-
firm the effectiveness and generalizability of our approach.
PRN achieves new SOTA on anomaly detection and and
significantly surpasses previous arts in anomaly localization
performance.

Limitations. Our approach requires the dataset to pro-
vide accurate ground truth masks for anomalies. Using a
single image-level anomaly average score for anomalous
images with different defect sizes does not favor tiny defects.
We leave this intriguing extension to future work.
Acknowledgement This project was supported by NSFC
under Grant No. 62102092 and No. 62032006.
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Figure 6. Qualitative examples on MVTec [4]. PRN achieves more accurate localization results for various types of anomalies.

Anomaly Generation Performance

EA HEA HOA TA I " P " O " A "
X X 98.6 97.2 93.4 75.7
X X X 99.1 98.4 95.4 77.4
X X X 98.6 98.4 95.7 75.2

X X X 98.7 98.2 95.1 73.4
X X X 98.4 98.4 94.9 77.6
X X X X 99.4 99.0 96.1 78.6

Table 5. Ablations of anomaly generation strategies.

I " P " O " A " T #
PRN5% 99.2 98.6 95.4 78.1 0.063

PRN10% 99.4 99.0 96.1 78.6 0.064
PRN20% 99.2 98.8 95.7 77.3 0.066
PRN100% 86.2 91.4 75.4 49.9 0.074

Table 6. Ablations of the ratio of prototypes to total normal samples.

DevNet [35] DRA [13] PRN(Ours)

I " P " O " A " I " P " O " A " I " P " O " A "
1 79.6 75.3 51.0 16.5 88.9 78.8 58.2 19.1 98.8 98.3 95.4 74.7
5 86.7 83.7 66.9 22.7 93.5 82.8 68.6 21.9 99.2 98.6 95.6 76.4
10 92.2 85.3 71.4 24.4 96.1 85.3 73.3 26.0 99.4 99.0 96.1 78.6

Table 7. Impact of the number of seen anomalies used.

few prototypes lead to insufficient discrimination between
prototypes, resulting in inferior performance. The results
indicate that a proportion of 10% produces the optimum
performance. In addition, using fewer prototypes can speed
up inference.

Effects of the number of seen anomalies used. As
shown in Table 7, we explore the impact of the number
of anomalies used. Our approach significantly outperforms
Devnet [35] and DRA [13] using different numbers of seen
anomalies, which demonstrates the effectiveness of our pro-
posed anomaly generation strategies and the robustness of
PRN to datasets of different levels of imbalance.

4.4. Evaluation on other benchmarks

To further evaluate the anomaly detection and localization
capabilities of PRN, we benchmark PRN on three additional

DAGM [61] BTAD [34] KolektorSDD2 [7]

I " P " O " A " I " P " O " A " I " P " O " A "
DRAEM 91.1 83.4 70.5 35.6 89.0 87.1 61.6 19.2 81.1 85.6 67.9 39.1
CFLOW 91.2 95.1 87.6 45.2 90.5 96.1 71.6 54.0 95.2 97.4 93.8 46.0
SSPCAB 90.4 84.5 71.9 33.9 88.3 83.5 54.1 13.0 83.4 86.2 66.1 44.5
RD4AD 90.7 94.1 85.5 40.8 94.4 96.9 75.8 53.5 96.0 97.6 94.7 43.5
PatchCore 92.5 96.1 88.0 49.0 92.6 96.9 76.3 51.5 94.6 97.1 89.3 49.8
DRA 93.5 95.1 88.8 47.6 94.2 75.4 56.2 12.4 86.8 84.4 56.9 3.6
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Table 8. Comparison of PRN with other approaches on DAGM,
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widely used datasets, namely DAGM [61], BTAD [34] and
KolektorSDD2 [7]. As shown in Table 8, PRN achieves
new SOTA performance on all three datasets, proving its
effectiveness and generalization. Results for more detailed
comparisons and some qualitative examples are provided in
the supplementary material.

5. Conclusion

In this paper, we proposed a novel framework called Pro-
totypical Residual Network for anomaly detection and local-
ization. PRN learns residual resentations across multi-scale
feature maps and within multi-size receptive fields at each
scale, enabling accurate detection and localization of anoma-
lous regions that come in a variety of sizes, shapes and
numbers. In addition, we propose various anomaly gener-
ation strategies to expand and diversify the anomalies. We
conduct in-depth experiments on four popular datasets to con-
firm the effectiveness and generalizability of our approach.
PRN achieves new SOTA on anomaly detection and and
significantly surpasses previous arts in anomaly localization
performance.

Limitations. Our approach requires the dataset to pro-
vide accurate ground truth masks for anomalies. Using a
single image-level anomaly average score for anomalous
images with different defect sizes does not favor tiny defects.
We leave this intriguing extension to future work.
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Figure 6. Qualitative examples on MVTec [4]. PRN achieves more accurate localization results for various types of anomalies.
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lous regions that come in a variety of sizes, shapes and
numbers. In addition, we propose various anomaly gener-
ation strategies to expand and diversify the anomalies. We
conduct in-depth experiments on four popular datasets to con-
firm the effectiveness and generalizability of our approach.
PRN achieves new SOTA on anomaly detection and and
significantly surpasses previous arts in anomaly localization
performance.
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single image-level anomaly average score for anomalous
images with different defect sizes does not favor tiny defects.
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Conclusion 5

Contributions & Limitations

Ø We proposed a novel framework called Prototypical Residual Network (PRN) for 
anomaly detection and localization

Ø We proposed various anomaly generation strategies to expand and diversify the 
anomalies

Ø We conduct in-depth experiments on four popular datasets to confirm the 
effectiveness and generalizability of PRN

Contributions

Limitations
Ø Our method requires ground truth masks of the seen anomaly samples

Ø Uniform image-level anomaly scores for anomalous images with different defect 
sizes do not favor small defects
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