



#### RILS: Masked Visual Reconstruction In Language Semantic Space

Shusheng Yang<sup>1,2</sup> Yixiao Ge<sup>2</sup> Kun Yi<sup>2</sup> Dian Li<sup>3</sup> Ying Shan<sup>2</sup> Xiaohu Qie Xinggang Wang<sup>1</sup>

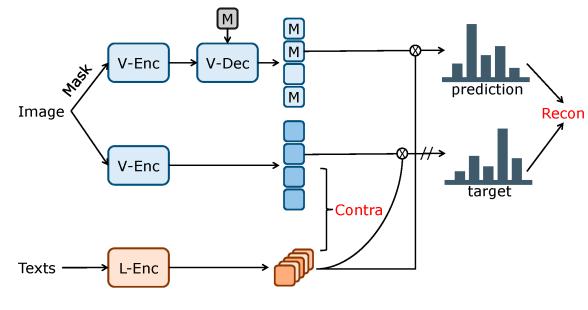
<sup>1</sup>School of EIC, Huazhong University of Science and Technology <sup>2</sup>ARC Lab, Tencent PCG <sup>3</sup>Foundation Technology Center, Tencent PCG

Paper Tag: THU-PM-258



### **Quick Preview**

- Better visual training by leveraging masked image modeling and image-text contrastive simultaneously
- A novel and effective pre-training method termed "Reconstruction in Language Space"
- Better transferability/zero-shot ability/few-shot ability on a wide range of downstream tasks.



Overview of our RILS



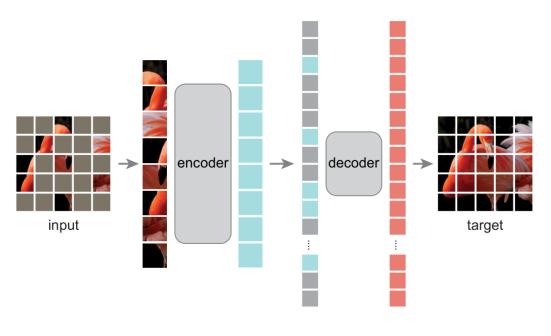
### **Visual Representation Learning**

- Masked Image Modeling
- Image-text Contrastive Learning



## Masked Image Modeling (MIM)

- Random Mask → Reconstruct
- Fully self-supervised
- Fine-grained supervision
  - Transferability on downstream tasks



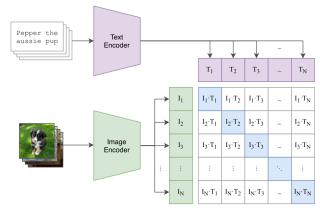
He, Kaiming, et al. [1]

[1] Masked Autoencoders Are Scalable Vision Learners

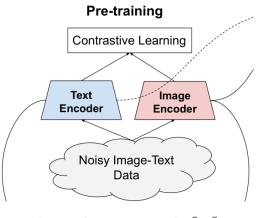


## Image-text Contrastive (ITC)

- Image-text pairs → Contrastive
- Image-text alignment
- Zero-shot Understanding
- Robustness



Radford, Alec, et al. [1]



Jia, Chao, et al. [2]

[1] Learning Transferable Visual Models From Natural Language Supervision[2] Scaling up visual and vision-language representation learning with noisy text supervision



#### Motivation MIM **Better Visual** & **Pre-training** ITC Pepper the Text aussie pup Encoder $T_2$ T1 T<sub>3</sub> $I_1 \cdot T_1 = I_1 \cdot T_2 = I_1 \cdot T_3$ $I_1 \cdot T_N$ $I_2 \cdot T_1 \quad I_2 \cdot T_2$ $I_2$ $\rightarrow$ $I_2 \cdot T_3$ $I_2 \cdot T_N$ encoder decoder Image $I_3 \cdot T_1 = I_3 \cdot T_2 = I_3 \cdot T_3$ $I_3 \cdot T_N$ Encoder target input $I_N \cdot T_1 \mid I_N \cdot T_2 \mid I_N \cdot T_3$ $I_N \cdot T_N$ $I_N$

Radford, Alec, et al. [2]

He, Kaiming, et al. [1]

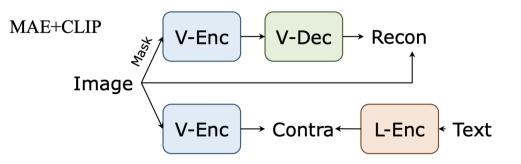
[1] Masked Autoencoders Are Scalable Vision Learners

[2] Learning Transferable Visual Models From Natural Language Supervision



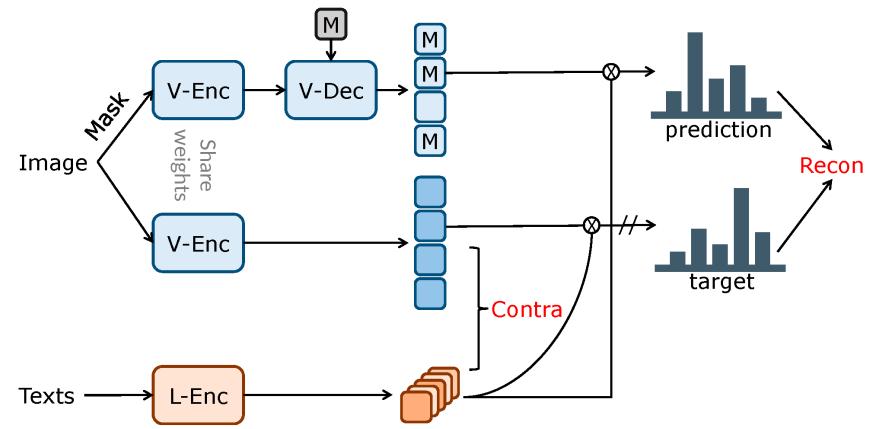
### Intuition & Observation

- MIM & ITC can benefit each other
  - MIM brings local supervision, ITC brings global supervision
  - MIM excels at local relation modeling, ITC excels at global semantic alignment
- Naïve combination (MAE+CLIP) shows unsatisfactory mutual benefit
  - Reconstruction raw RGB pixels may be inconsistent with ITC
  - Two objectives should be more aligned with each other for better performance





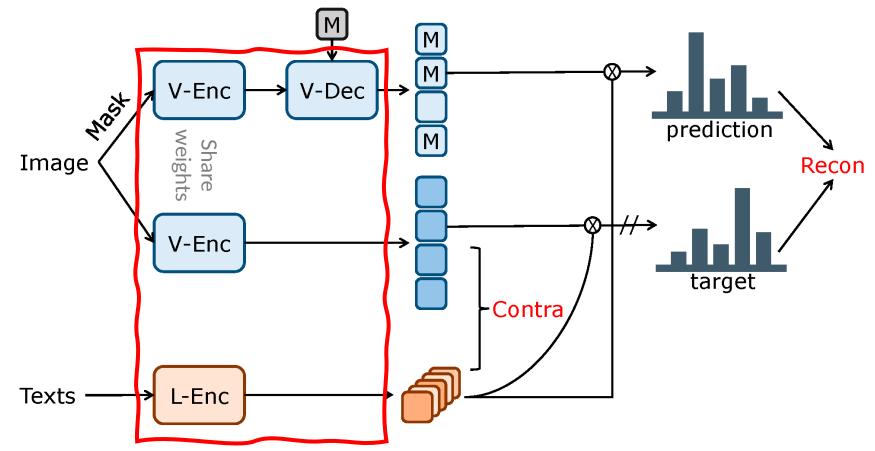
#### Our RILS



- Core insight: Reconstruction in language semantic space
- Three transformer networks
- Two objectives



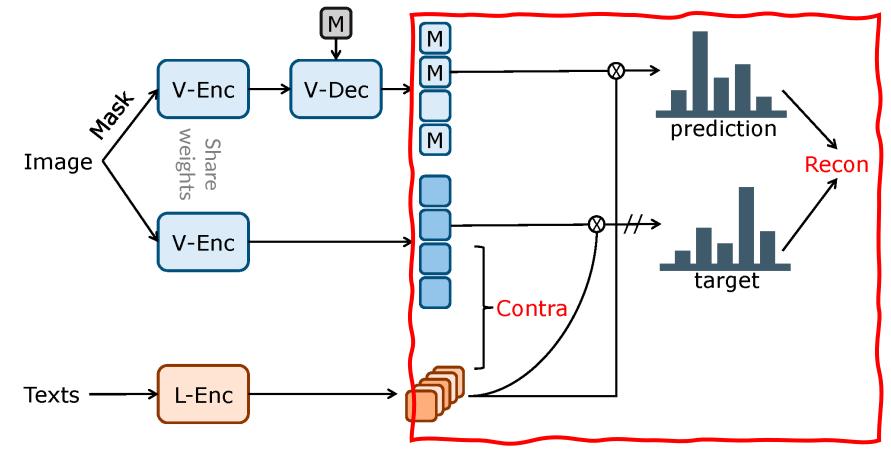
#### Our RILS



- Core insight: Reconstruction in language semantic space
- Three transformer networks
- Two objectives



#### Our RILS



- Core insight: Reconstruction in language semantic space
- Three transformer networks
- Two objectives



#### Image-text Contrastive Μ V-Enc V-Dec Most prediction Μ Image Recon +//-` ⊗ V-Enc target -Contra L-Enc Texts

Original Images and texts are fed into vision encoder and text encoder
Contrastive learning on encoded image features and encoded text features



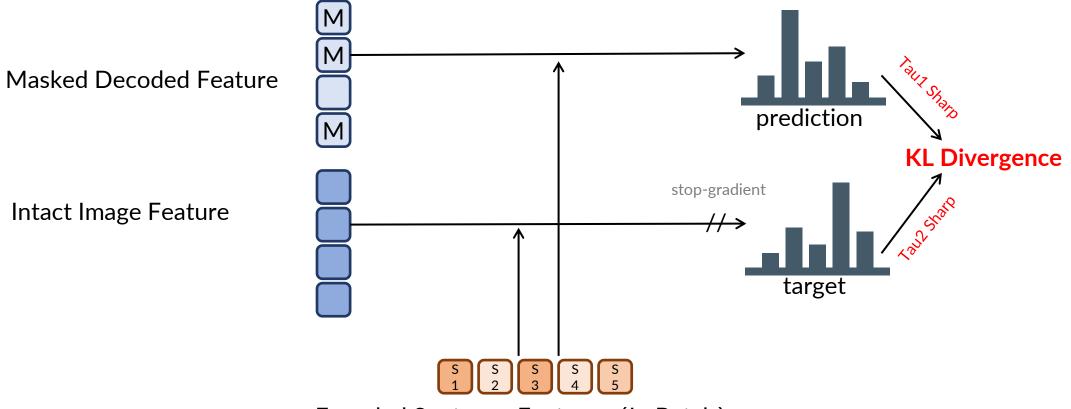
#### **Reconstruct in Language Space** Μ V-Enc V-Dec Most prediction Μ Image Recon **.**//-' $\bigotimes$ V-Enc target -Contra L-Enc Texts

Asymmetric encoder-decoder design

Masked image is fed into V-Enc and V-Dec to extract features and reconstruct visual signals



### **Reconstruct in Language Space**



Encoded Sentence Feature (In Batch)

- Masked decoded features and original encoded features are mapped to probabilistic distribution over in-batch text features (patch-sentence prob)
- Minimize the KL divergence between prediction and target



#### **Training Objective**

$$\mathcal{L}_{I2T} = -\frac{1}{B} \sum_{i=1}^{B} \log \frac{\exp(\langle z_i^I, z_i^T \rangle / \sigma)}{\sum_{j=1}^{B} \exp(\langle z_i^I, z_j^T \rangle / \sigma)},$$
$$\mathcal{L}_{T2I} = -\frac{1}{B} \sum_{i=1}^{B} \log \frac{\exp(\langle z_i^T, z_i^I \rangle / \sigma)}{\sum_{j=1}^{B} \exp(\langle z_i^T, z_j^I \rangle / \sigma)},$$

Image-text Contrastive Loss (InfoNCE)

$$\boldsymbol{p}_{i}^{k} = \{ \frac{\exp(\langle f_{i}^{k}, z_{l}^{T} \rangle / \tau_{1})}{\sum_{j=1}^{B} \exp(\langle \tilde{f}_{i}^{k}, z_{j}^{T} \rangle / \tau_{1})} \mid l \in [1, B] \},$$
$$\boldsymbol{q}_{i}^{k} = \{ \frac{\exp(\langle \tilde{g}_{i}^{k}, z_{l}^{T} \rangle / \tau_{2})}{\sum_{j=1}^{B} \exp(\langle \tilde{g}_{i}^{k}, z_{j}^{T} \rangle / \tau_{2})} \mid l \in [1, B] \},$$

$$\mathcal{L}_{ ext{Recon}} = rac{1}{\mathcal{C} \cdot ||\mathcal{M}||} \sum_{i \in \mathcal{C}} \sum_{k \in \mathcal{M}} -\operatorname{sg}[\boldsymbol{p}_i^k] \log \boldsymbol{q}_i^k,$$

Reconstruction Loss (KL Divergence)

$$\mathcal{L}_{\text{RILS}} = \lambda_1 \cdot \mathcal{L}_{\text{Contra}} + \lambda_2 \cdot \mathcal{L}_{\text{Recon}}.$$



### **Pre-training**

- Vanilla ViT as vision encoder
- 1-layer ViT block as vision decoder
- 20M image-text pairs sample from Laion-400M
- 25 epochs + 32 gpus



### ImageNet Classification

| Method   | PT Dataset | PT Epoch  | Lin. Probe | Fine-tuning |
|----------|------------|-----------|------------|-------------|
| MAE      |            |           | 44.3       | 82.1        |
| CLIP     | Laton 20M  |           | 67.8       | 82.7        |
| MAE+CLIP | Laion 20M  | 25(~400)  | 64.5       | 82.9        |
| RILS     |            |           | 71.5       | 83.3        |
| MAE      | IN-1K      | 1600      | 67.8       | 83.6        |
| RILS     | Laion 50M  | 25(~1000) | 71.9       | 83.6        |

Better performance on linear probe and end-to-end fine-tuning



#### **Detection & Segmentation**

| Method — | СС   | )CO      | Ľ    | ADE20K   |         |
|----------|------|----------|------|----------|---------|
|          | Det  | Inst Seg | Det  | Inst Seg | Sem Seg |
| MAE      | 48.1 | 42.4     | 31.0 | 29.6     | 44.2    |
| CLIP     | 47.7 | 42.0     | 32.3 | 30.5     | 45.2    |
| MAE+CLIP | 48.1 | 42.4     | 32.6 | 30.7     | 45.3    |
| RILS     | 48.5 | 42.6     | 33.8 | 31.6     | 48.1    |

80 Categories >1000 Categories 150 Categories

Obviously better results on complex and fine-grained image understanding



#### Label Efficient Transfer

| Method – | IN1K | C (images per c | elass) | COCO (sampling ratio) |       |       |  |  |
|----------|------|-----------------|--------|-----------------------|-------|-------|--|--|
|          | 1    | 2               | 10     | 2%                    | 10%   | 20%   |  |  |
| MAE      | 3.4  | 5.2             | 14.8   | 6.10                  | 23.16 | 29.78 |  |  |
| CLIP     | 19.4 | 29.2            | 46.3   | 5.05                  | 22.49 | 29.88 |  |  |
| MAE+CLIP | 17.7 | 27.2            | 46.4   | 5.28                  | 23.72 | 29.53 |  |  |
| RILS     | 24.0 | 34.6            | 51.8   | 6.46                  | 24.69 | 31.97 |  |  |

**Strong out-of-the-box capacity** by performing reconstruction in language semantic space



#### Zero-shot Classification and Retrieval

| Method    | Food101     | CIFAR10     | CIFAR100 | CUB200      | SUN397      | Cars        | Aircraft   | DTD         | Pets        | Caltech101  | Flowers     | <b>MNIST</b> | FER2013     | STL10       | EuroSAT     | <b>RESISC45</b> | GTSRB       | Country211 | CLEVR       | SST2        | ImageNet           | Average | # Wins.        |
|-----------|-------------|-------------|----------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-----------------|-------------|------------|-------------|-------------|--------------------|---------|----------------|
| CLIP [47] | 55.7        | 76.0        | 46.9     | <b>24.4</b> | 50.7        | 17.8        | 4.8        | 31.5        | 53.7        | 78.4        | 31.8        | 26.8         | 37.6        | 89.0        | 22.7        | 36.9            | <b>24.1</b> | 6.8        | 20.0        | 49.1        | 40.3               | 39.3    | $\overline{2}$ |
| SLIP [43] | 56.7        | 73.4        | 43.2     | 22.6        | 51.6        | 17.7        | 4.9        | 32.4        | 52.5        | 79.1        | 33.3        | 29.4         | 33.5        | 89.5        | 17.8        | 36.2            | 17.8        | 6.8        | <b>23.4</b> | 49.7        | 41.6               | 38.7    | 2              |
| MAE+CLIP  | 57.8        | 78.2        | 52.4     | 23.9        | 51.6        | 18.1        | 4.6        | 31.5        | 55.8        | 78.4        | 32.0        | 27.6         | 32.7        | 89.8        | 27.0        | 39.4            | 22.9        | 7.2        | 14.7        | 49.3        | 42.3               | 39.9    | 0              |
| RILS      | <u>58.9</u> | <u>86.2</u> | 55.1     | 23.4        | <u>51.8</u> | <u>19.5</u> | <u>5.9</u> | <u>32.8</u> | <u>59.2</u> | <u>80.7</u> | <u>33.5</u> | 22.6         | <u>40.1</u> | <u>93.2</u> | <u>28.8</u> | <u>40.2</u>     | 19.1        | <u>7.8</u> | 16.8        | <u>50.0</u> | <b><u>45.0</u></b> | 42.3    | 17             |

#### RILS wins 17 over 21 classification datasets

| Method - | Z.S. COCO Retrieval |         |         |         |  |  |  |  |  |
|----------|---------------------|---------|---------|---------|--|--|--|--|--|
| Method - | I2T R@1             | I2T R@5 | T2I R@1 | T2I R@5 |  |  |  |  |  |
| CLIP     | 41.82               | 69.50   | 30.54   | 57.10   |  |  |  |  |  |
| SLIP     | 44.54               | 72.20   | 33.26   | 59.66   |  |  |  |  |  |
| MAE+CLIP | 42.72               | 70.66   | 31.40   | 57.50   |  |  |  |  |  |
| RILS     | 45.06               | 73.38   | 34.86   | 61.36   |  |  |  |  |  |

#### Better image-text alignment



#### Robustness on OOD classification

| Method   | IN-A | IN-R | IN-Sketch | IN-V2 | ObjectNet | Avg. |
|----------|------|------|-----------|-------|-----------|------|
| CLIP     | 9.3  | 51.2 | 28.1      | 39.8  | 17.7      | 32.3 |
| SLIP     | 10.5 | 49.8 | 26.7      | 41.3  | 20.4      | 33.1 |
| MAE+CLIP | 11.6 | 53.9 | 31.1      | 41.6  | 19.4      | 34.4 |
| RILS     | 12.1 | 55.7 | 31.4      | 43.3  | 21.0      | 35.7 |

RILS wins on all 5 ImageNet1K out-of-distribution variants



#### Comparisons with counterparts

| Method                | ZS.  | Lin. | FT.         |
|-----------------------|------|------|-------------|
| MAE [28]              | _    | 43.4 | 81.5        |
| CLIP [47]             | 32.1 | 64.1 | 82.0        |
| MIM→LiT [70]          | 13.2 | 43.4 | 81.5        |
| MIM → CLIP            | 34.4 | 64.8 | 82.2        |
| CLIP→MIM [34, 44, 63] | _    | 66.2 | 82.4        |
| RILS (E2E)            | 37.5 | 68.5 | <u>82.7</u> |

| Reconstruction Space                                          | ZS.            | Lin.                                        | FT.         |
|---------------------------------------------------------------|----------------|---------------------------------------------|-------------|
| Raw Pixel Space (MAE+CLIP)<br>High-level Vision Space [12,74] | $34.2 \\ 34.8$ | $\begin{array}{c} 61.9 \\ 67.7 \end{array}$ | 82.2 $82.4$ |
| Language Semantic Space (RILS)                                | <u>37.5</u>    | <u>68.5</u>                                 | <u>82.7</u> |

All models are trained on exact the same dataset

RILS outperforms its two-stage counterparts

Reconstruction space matters



#### Summary

- An end-to-end visual pre-training method by leveraging MIM + ITC
- To achieve better mutual benefit between MIM and ITC, we propose to perform masked reconstruction in language semantic space
- Local- and global- supervision → better performance on fine-/coarsegrained tasks
- Reconstruct in language space → better vision-language alignment → Better performance on complex task and zero-shot/low-shot ability.





# **Thanks For Your Attention!**