



#### Discrete Point-wise Attack Is Not Enough: Generalized Manifold Adversarial Attack for Face Recognition

Paper Tag: THU-AM-390

Project Page: https://github.com/tokaka22/GMAA



Qian Li



Yuxiao Hu



Ye Liu



Xin Jin



Yuntian Chen

Eastern Institute for Advanced Study, Ningbo Zhejiang, China

## Overview

• We propose a new adversarial attack paradigm **GMAA**.



## Overview

- We propose a new adversarial attack paradigm **GMAA**.
- We instantiate GMAA in the face expression state space.





## Overview

- We propose a new adversarial attack paradigm **GMAA**.
- We instantiate GMAA in the face expression state space.
- Our method has better attack performance and higher visual quality.



# Limitations of previous work



• For the target domain, previous methods tend to attack a single target identity sample.

# Limitations of previous work



• For the target domain, previous methods tend to attack a single target identity sample.



#### Poor generalization on unknow state target images !

# Limitations of previous work



• For the target domain, previous methods tend to attack a single target identity sample.

Poor generalization on unknow state target images ! Generate highly generalizable adversarial examples !

• For the adversarial domain, many methods searching for **discrete adversarial examples** in a hypersphere of the clean sample.

Ignore the continuity of the adversarial domain ! Find a continuous adversarial manifold instead of discrete adversarial examples!

Existing works are not strong enough both in target domain and adversarial domain.

#### **Generalized Manifold Adversarial Attack**



• Expand the target domain **from one to many** to encourage a good generalization.

GMAA



GMAA

- Expand the target domain **from one to many** to encourage a good generalization.
- Expand the adversarial domain from discrete points to manifold to strengthen the attack effect.



#### Facial Action Coding System

| Description                                      | Facial Muscle                                                                                                                     | Example                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inner Brow<br>Raiser                             | Frontalis, pars medialis                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                         |
| Outer Brow<br>Raiser (unilateral,<br>right side) | Frontalis, pars lateralis                                                                                                         | 00                                                                                                                                                                                                                                                                                                                                         |
| Brow Lowerer                                     | Depressor Glabellae,<br>Depressor Supercilli,<br>Currugator                                                                       | 00                                                                                                                                                                                                                                                                                                                                         |
| Upper Lid Raiser                                 | Levator palpebrae<br>superioris                                                                                                   | 00                                                                                                                                                                                                                                                                                                                                         |
| Cheek Raiser                                     | Orbicularis oculi, pars<br>orbitalis                                                                                              | 06                                                                                                                                                                                                                                                                                                                                         |
| Lid Tightener                                    | Orbicularis oculi, pars<br>palpebralis                                                                                            | 00                                                                                                                                                                                                                                                                                                                                         |
|                                                  | Description Inner Brow Raiser Outer Brow Raiser (unilateral, right side) Brow Lowerer Upper Lid Raiser Cheek Raiser Lid Tightener | DescriptionFacial MuscleInner Brow<br>RaiserFrontalis, pars medialisOuter Brow<br>Raiser (unilateral,<br>right side)Frontalis, pars lateralisBrow LowererDepressor Glabellae,<br>Depressor Supercilli,<br>CurrugatorUpper Lid RaiserLevator palpebrae<br>superiorisCheek RaiserOrbicularis oculi, parsLid TightenerOrbicularis oculi, pars |

- GMAA
- Expand the target domain **from one to many** to encourage a good generalization.
- Expand the adversarial domain from discrete points to manifold to strengthen the attack effect.



**Definition 1.** Let  $\boldsymbol{x}_0 \in \mathbb{R}^{3 \times H \times W}$ , then  $\mathcal{M}^0 = G(\boldsymbol{x}_0; \boldsymbol{\theta})$  is a continuous adversarial space if and only if (1)  $\mathcal{M}^0$  is a subspace of  $\mathbb{R}^{3 \times H \times W}$ .

(2)  $\forall x_i^0 \in \mathcal{M}, x_i^0$  is an adversarial version of  $x_0$ .

**Theorem 1.**  $\mathcal{M}^0$  generated by  $G_0$  is a continuous adversarial manifold, where  $G_0 : V \to \mathcal{M}$  is a map when fixed the input  $\mathbf{x}_0$  in G.

**Remark 1.** Since the  $\mathcal{M}^0$  generated by  $G_0$  is a continuous adversarial manifold when fixed the  $x_0$ , then we can assert over the sample space  $\Omega$ , the adversarial examples space generated by G constitutes an adversarial fiber bundle.

**Definition 2.**  $\mathcal{M}^0$  generated by  $\mathbf{x}_0 \in \mathbb{R}^{3 \times H \times W}$  is a semantic continuous adversarial space if and only if (1)  $\mathcal{M}^0$  is a continuous adversarial space. (2)  $\forall \mathbf{x}_1^0, \mathbf{x}_2^0 \in \mathcal{M}^0$ , if  $\mathbf{x}_1^0$  is close to  $\mathbf{x}_2^0$  on the  $\mathcal{M}^0$ , then  $\mathbf{x}_1^0$ 

and  $x_2^0$  satisfy the semantic consistency.

**Theorem 2.**  $\mathcal{M}^0$  generated by  $G_0$  is a semantic continuous adversarial manifold, where  $G_0 : V \to \mathcal{M}$  is a map when fixed the input  $\mathbf{x}_0$  in G.

- GMAA
- Expand the target domain **from one to many** to encourage a good generalization.
- Expand the adversarial domain from discrete points to manifold to strengthen the attack effect.



GMAA

- Expand the target domain **from one to many** to encourage a good generalization.
- Expand the adversarial domain from discrete points to manifold to strengthen the attack effect.

Discrete Point-wise Attack Generalized Manifold Adversarial Attack



#### Generative adversarial module

- The generator *G* produces adversarial example wearing the expression matching to the supplied AU label.
- The discriminator  $D_c$  learns to distinguish real images from generated images.
- The AU predictor  $D_{AU}$  learns the AU coding rules by real images and their AU labels.



#### **Expression supervision module**

- Four pre-trained expression supervision networks protect the visual identity and guide *G* in expression editing.
- The global branch focuses on structural features of the face, whereas the local branch protects important facial details.
- Each generator has the network structure similar to [2].

[2] Albert Pumarola, Antonio Agudo, Aleix M Martinez, Al- berto Sanfeliu, and Francesc Moreno-Noguer. Ganimation: Anatomically-aware facial animation from a single image. In *Proceedings of the European conference on computer vision (ECCV)*, pages 818–833, 2018.



#### **Transferability enhancement module**

- To improve the transferability of adversarial examples and the black-box attack success rate, we introduce the transferability enhancement module from [3].
- All baselines are equipped with this module for a fair comparison.

[3] Shengshan Hu, Xiaogeng Liu, Yechao Zhang, Minghui Li, Leo Yu Zhang, Hai Jin, and Libing Wu. Protecting facial privacy: Generating adversarial identity masks via style-robust makeup transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15014–15023, 2022.



#### Generalized attack module

- This module intends to raise the attack success rate on the unseen face belonging to the target identity.
- It is a generic module, which can be introduced into other adversarial attack approaches.
- Manifold Adversarial Attack (MAA) means the method without this module, just expand adversarial domain from point to manifold.
- When the model is coupled with this module, we call it G-(method name).

**Black-box attack success rate** •

|                  |        | Cel   | ebA-HQ  |            |
|------------------|--------|-------|---------|------------|
|                  | IRSE50 | IR152 | Facenet | Mobileface |
| Clean            | 3.68   | 3.08  | 1.31    | 8.43       |
| PGD [23]         | 24.20  | 13.37 | 5.86    | 28.72      |
| MI-FGSM [7]      | 38.90  | 20.76 | 9.25    | 40.48      |
| SemanticAdv [26] | 26.53  | 10.24 | 7.80    | 55.32      |
| TIP-IM [34]      | 44.20  | 16.09 | 14.46   | 65.36      |
| AMT-GAN [16]     | 51.06  | 15.63 | 11.63   | 33.27      |
| MAA              | 60.40  | 29.43 | 18.91   | 56.13      |

|                  | LFW    |       |         |            |
|------------------|--------|-------|---------|------------|
|                  | IRSE50 | IR152 | Facenet | Mobileface |
| Clean            | 3.20   | 0.06  | 0.04    | 5.00       |
| PGD [23]         | 31.30  | 10.20 | 7.40    | 33.50      |
| MI-FGSM [7]      | 38.20  | 14.20 | 7.60    | 39.40      |
| SemanticAdv [26] | 33.60  | 10.40 | 8.80    | 37.40      |
| TIP-IM [34]      | 32.80  | 15.20 | 13.00   | 79.00      |
| AMT-GAN [16]     | 40.72  | 25.23 | 13.89   | 35.67      |
| MAA              | 55.80  | 29.20 | 18.00   | 60.80      |

Attack performance on ٠ commercial API

100

90

80

70 60

50

40

30

20

10

.

Clean

PGD MI-FGSM

**CelebA-HQ on Tencent** 

TIP-IM

35,58

AMT-GAN MAA



Clean

100

90

90

60

50

40

30

20

10

0

PGD MI-FGSM Semantic-ADV

LFW on Tencent

TIP-IM

39<u>.</u>09

AMT-GAN MAA

.

Visual quality •



Ours



Target image

Attack Success Rate:100%



Original



TIP-IM

ICCV21



AMT-GAN CVPR22

• Ablation studies of generalized attack module

——Attack real state set



Case 0

Train: attack target \*

Test: attack target  $\times 1^2/3$ 



- Ablation studies of generalized attack module
  - ——Attack real state set

Targe set S =Targe \* 3 2 Case 0 Case 1 Case 2 Case 3 Train: attack target \* Train: attack target  $S/\{2\}$ Train: attack target  $S/{3}$ Train: attack target  $S/\{1\}$ Test: attack target  $\times1^2/3$ Test : attack target 1 Test: attack target 2 Test: attack target 3 Black-box attack success rate of Mobileface 100 90 ■G-TIP-IM ■G-AMT-GAN ■GMAA 80 70 60 50 40 30 20 10 0 Attack Target \* Attack Target 1 Attack Target 2 Attack Target 3

- Ablation studies of generalized attack module
  - ——Attack real state set







... |-

Targe \*



Case 0 Train: attack target \* Test: attack target \*\1\2\3

Case 1 Train: attack target *S*/{1} Test : attack target 1

Case 2 Train: attack target *S*/{2} Test: attack target 2

Case 3 Train: attack target *S*/{3}

Test: attack target 3

|                          | Target* |            | Target 1             |                      | Target 2             |                      | Target 3             |                      |
|--------------------------|---------|------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                          | Facenet | Mobileface | Facenet              | Mobileface           | Facenet              | Mobileface           | Facenet              | Mobileface           |
| TIP-IM [34] / G-TIP-IM   | 17.68   | 86.33      | 4.54 / <b>7.62</b>   | 58.03 / <b>70.93</b> | 10.75 / 20.42        | 34.42 / <b>49.20</b> | 11.93 / <b>19.41</b> | 22.21 / <b>42.43</b> |
| AMT-GAN [16] / G-AMT-GAN | 16.12   | 55.95      | 8.22 / <b>13.23</b>  | 26.99 / 47.14        | 9.78 / <b>17.12</b>  | 27.67 / 43.93        | 10.91 / <b>16.16</b> | 24.69 / <b>42.37</b> |
| MAA / GMAA               | 25.22   | 72.62      | 11.43 / <b>17.84</b> | 43.44 / <b>67.50</b> | 13.30 / <b>21.71</b> | 33.08 / <b>41.24</b> | 12.64 / <b>19.15</b> | 29.56 / <b>47.21</b> |

• Ablation studies of generalized attack module

——Attack synthesized state set

|                                 | Facenet             | Mobileface           |
|---------------------------------|---------------------|----------------------|
| TIP-IM [34] / <b>G-TIP-IM</b>   | 5.80 / <b>9.50</b>  | 17.20 / <b>23.5</b>  |
| AMT-GAN [16] / <b>G-AMT-GAN</b> | 4.04 / <b>8.27</b>  | 9.82 / <b>12.45</b>  |
| MAA / <b>GMAA</b>               | 6.60 / <b>10.60</b> | 13.50 / <b>21.60</b> |

#### • Other Ablation studies

—— Ablation studies of  $D_{AU}$ 

|     | Without $D_{AU}$ | Without local editors | Original |
|-----|------------------|-----------------------|----------|
| MSE | 0.5549           | 0.6283                | 0.3582   |
|     |                  |                       |          |

------ Ablation studies of local editors







without local editors

with local editors

without local editors

– Ablation studies of different expressions



# Thanks!

This work was supported and partially funded by the National Natural Science Foundation of China (Grant No. 62106116). This work was also supported in part by ZJNSFC under Grant LQ23F010008. We also would like to thank Han Fang of NUS for the valuable discussion.