Change-Aware Sampling and Contrastive Learning for Satellite Images

Utkarsh Mall

Bharath Hariharan Kavita Bala **Cornell University**

Paper Tag: TUE-PM-107

Preview

Large-scale Challenges Disaster monitoring Climate change

Spatio-temporal satellite images

5 Terapixel information every week

Change-aware Contrastive Learning (CACo)

		`	EuroSat (Acc.)		BigEarthNet (mAP)		OSCD (F1)	Dynamic EarthNet (mIoU)
	Self-supervised	Pre-training (100k)	ResNet-18	Resnet-50	ResNet-18	Resnet-50	ResNet-18	Resnet-18
	representation	Random Init.	64.21	55.32	45.95	45.22	28.91	41.53
		ImageNet	86.16	89.08	66.40	71.37	35.30	43.75
Temporal information		Moco v2	87.22	89.75	67.20	72.88	38.21	47.97
Change awareness		GSSL	87.74	90.19	67.36	72.86	44.06	46.77
Geographical Information		SeCo	90.05	93.12	67.43	73.42	46.84	46.83
		CACo	93.08	94.48	69.43	73.63	50.29	50.20

Change-Aware Sampling and Contrastive Learning for Satellite Images

Utkarsh Mall

Bharath Hariharan Kavita Bala **Cornell University**

Introduction

Change Detection

Event Retrieval

Land Cover Classification

Semantic Segmentation

Applying computer vision to satellite images.

Climate change

Disaster monitoring

Supervision is expensive

Training these tasks require labeled data.

Labeling is even harder as labelling satellite images require experts.

Using self-supervision

With self-supervision we can learn a representation without labels. Representation can used for downstream tasks with very few labels.

Change-Aware Constrastive (CACo) Learning

Goal: how can we best leverage the unique structure of satellite images for better self-supervised learning?

Long-term temporal signal for self-supervision

Time difference does not imply change Some locations are more informative

NPID: Unsupervised Learning via Non-Parametric Instance Discrimination, CVPR 2018, Wu *et. al.*MoCo: Momentum contrast for unsupervised visual representation learning, CVPR 2020, He *et. al.*PIRL: Self-Supervised Learning of Pretext-Invariant Representations CVPR 2020, Misra *et. al.*SimCLR: A simple framework for contrastive learning of visual representations, ICML 2020, Chen *et. al.*

Method

Contrastive Learning

Learning embedding by using negative and positives examples.

Positives

Negatives

NPID: Unsupervised Learning via Non-Parametric Instance Discrimination, CVPR 2018, Wu *et. al.*

MoCo: Momentum contrast for unsupervised visual representation learning, CVPR 2020, He *et. al.*

PIRL: Self-Supervised Learning of Pretext-Invariant Representations CVPR 2020, Misra *et. al.*

SimCLR: A simple framework for contrastive learning of visual representations, ICML 2020, Chen *et. al.*

Temporal information

Seasonal Contrast (SeCo)

Seco uses short-term temporal pairs as positives.

Mañas et. al., Seasonal contrast: Unsupervised pre-training from uncurated remote sensing data. ICCV, 2021

Long-term Temporal Contrast

Short-term temporal difference: model seasonal variation and should be positive.

Long-term temporal difference: model actual changes and should be negative.

Change-awareness

Not all locations are equally likely to change in long-term.

Long-term pairs with changes

Some locations can change drastically in a few years.

Long-term pairs with no changes

Whereas others do not.

Temporal information

Using Change Awareness

Push apart long-term temporal pairs if and only if there is a change. (CACo)

Finding Change using Representation

Bootstrapping representation

- Use representation to find change estimates
- Use changes to improve representation
- Repeat...

Change Estimate

Geographic sampling

Low information Samples

New Sampling Strategy:

- Sample using a stronger (σ= 5 km) Gaussian sampler around urban areas.
- Reject and resample if sample falls in ocean.

Experimental setup

Using MoCo V2 Framework

Models:

- ResNet-18
- ResNet-50

Self-supervision Dataset

- 100k
- 1 Million

Downstream Tasks

Task	Benchmark	Metric		
Landcover	EuroSat	Accuracy		
Classification	BigEarthNet	mAP		
Change Detection	OSCD	F1-Score		
Semantic Segmentation	Dynamic EarthNet	mloU		
Event	CaiRoad	AP@K		
Retrieval	CalFire			

MoCo V2: Improved Baselines with Momentum Contrastive Learning, CoRR 2020, He et. al.

Comparison to baselines

	EuroSat (Acc.)		BigEarth	let (mAP)	OSCD (F1)	Dynamic EarthNet (mIoU)	
Pre-training (100k)	ResNet-18	Resnet-50	ResNet-18	Resnet-50	ResNet-18	Resnet-18	
Random Init.	64.21	55.32	45.95	45.22	28.91	41.53	
ImageNet	86.16	89.08	66.40	71.37	35.30	43.75	
Moco v2	87.22	89.75	67.20	72.88	38.21	47.97	
GSSL	87.74	90.19	67.36	72.86	44.06	46.77	
SeCo	90.05	93.12	67.43	73.42	46.84	46.83	
CACo	93.08	94.48	69.43	73.63	50.29	50.20	

Conclusion

We present a novel self-supervised approach for contrastive learning on satellite images, leveraging three properties unique to them.

Thank You!

https://research.cs.cornell.edu/caco/

