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(a) Attribute object navigation
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(b) Attribute object navigation
with distractors
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(c) Hidden object navigation
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(d) Hidden object navigation
with distractors

y = x

Hidden object
descriptions on task y

Figure 5. PASTURE object navigation with descriptions. In general object navigation with descriptions is more challenging than the
ROBOTHOR object navigation task, as indicated by trend lines lying below the y = x line. (a) Appearance descriptions are more helpful
than spatial descriptions. (b) Performance further drops when distractor objects are introduced to the environment. However, CoWs are still
able to make better use of appearance description than spatial descriptions. (c) Models in the lower success regime (<15% ROBOTHOR
SUCCESS) perform comparably on finding hidden objects. However, this trend plateaus for higher success models. (d) Trends are similar
when distractor objects are introduced for hidden object navigation.

plore this hypothesis in Appx. E by visualizing CLIP re-
trieval results on LAION-5B [68] for the uncommon ob-
ject categories. The relatively high performance on uncom-
mon objects speaks to the flexibility of CoW baselines and
their ability to inherit desirable properties from the open-
vocabulary models that they are constructed from.
Can CoWs utilize appearance and spatial descriptions?
Looking at Fig. 5 (a) we see that neither appearance nor spa-
tial descriptions improve CoW performance compared to
their ROBOTHOR baseline performance (i.e., most points
lie under the y = x line). However, CoW is able to take
better advantage of appearance descriptions than spatial de-
scriptions. These results motivate future investigation on
open-vocabulary object localization with a greater focus on
textual object attributes.
Can CoWs find visible objects in the presence of distrac-
tors? In Fig. 5 (b) we see that CoWs experience perfor-
mance degradation when compared to Fig. 5 (a). We con-
clude that appearance and spatial attributes added as lan-
guage input are not sufficient to deal with the complexity of
distractors given current open-vocabulary models.
Can CoWs find hidden objects? Looking at Fig. 5 (c) we
notice that models in the lower success regime (less than
15% SUCCESS on ROBOTHOR) are able to find hidden ob-
jects at about the same rate as ROBOTHOR objects (i.e.,
they lie on the y = x line). OWL models in the higher suc-
cess regime (>15%) do not continue this trend; however,
they do achieve higher absolute accuracy as seen in Tab. 1.
Dealing with occlusion is a longstanding problem in com-
puter vision, and these results provide a foundation upon
which future hidden object navigation work can improve.
Can CoWs find hidden objects in the presence of dis-
tractors? Comparing Figs. 5 (c) and (d), we notice similar
trends lines, with the best models performing worse with
distractors. This suggests that distractors are less of a con-

CoW breeds PASTURE (Avg.) ROBOTHOR
ID Loc. Arch. Exp. Strategy SPL SR SPL SR

N OWL B/32 ROBOTHOR learn. 10.2 17.3 13.1 20.9N OWL B/32 HABITAT learn. 8.6 19.4 9.8 20.4N OWL B/32 FBE 12.6 21.1 16.9 26.7

Table 2. Exploration ablation. For a fixed object localizer
(OWL-ViT B/32 with post processing), we ablate over different
choices of exploration policy: the FBE heuristic, agents trained in
ROBOTHOR, and HABITAT (MP3D). We find that FBE outper-
forms learnable alternatives on both PASTURE and ROBOTHOR.
HABITAT learnable model perform worst, but are not trained on
any PASTURE or ROBOTHOR data.

CoW breeds PASTURE Uncom. ROBOTHOR
ID Loc. Arch. Obj. Prior SPL SR SPL SR

N OWL B/32 None 20.5 32.8 16.8 26.7N OWL B/32 GPT-3.5 22.2 36.9 17.0 27.5

Table 3. CoW with GPT-3.5 priors. Leveraging GPT-3.5, we
generate priors for objects (e.g., apples are likely to be in dining
room scenes). Instead of directly searching for the target object,
CoW first searches for the scenes, which boosts performance.

cern in the case of hidden objects than for visible object
targets. In light of the fact that detection methods generally
work better on larger objects, we hypothesize this effect is
because distractor objects are smaller (e.g., apples, vases,
basketballs) than objects used to conceal target categories
(e.g., beds, sofas, etc.).

What exploration method performs best? We ablate
the decision to use FBE for most experiments by fixing an
object localizer (OWL, B/32 (N)) and comparing against
ROBOTHOR learnable exploration and HABITAT learnable
exploration in Tab. 2. We notice that FBE performs best in
all cases; however, learnable exploration still performs well
suggesting that these models do learn useful strategies for
the downstream tasks.
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Figure 6. Failure analysis for OWL, B/32 (N). Exploration and
object localization errors occur at similar ratios, with increased
localization failures in the presence of distractors.

Can CoW incorporate object priors? Examining Tab. 3,
we see that incorporating GPT-3.5 object-level priors im-
proves performance on both PASTURE uncommon objects
and ROBOTHOR. These initial results suggest positive
trends for incorporating outside knowledge into CoW. Fu-
ture work may consider more sophisticated methods for in-
jecting priors to steer navigation.
How do CoWs fail? We identify three high-level failure
modes. (1) Exploration fail: the target is never seen. (2)
Object localization fail: the target is seen but the localizer
never fires. (3) Planning fail: the target is seen and the
localizer fires, but planning fails due to inaccuracy in the
map representation (Sec. 4.2). Looking at Fig. 6, we notice
a large fraction of failures are due to exploration and object
localization. This suggests CoWs may continue to improve
as research in these fields progress. In Fig. 6 we also see
that in cases where distractors are present a higher fraction
of object localization failures occur, further suggesting that
open-vocabulary models currently struggle to make full use
of attribute prompts. See Appx. I for more failure analysis.

6.3. Comparison to Prior Art

We primarily evaluate CoWs in general L-ZSON set-
tings; however, we further evaluate CoWs on ZSON bench-
marks to establish them as a strong baseline for these tasks.
Recall, ZSON can be seen as a case of L-ZSON where only
object goals are specified (no attributes).

In Tab. 4, we see there exists a CoW that outperforms
the end-to-end baselines in all cases except SUCCESS on
HABITAT (MP3D). For instance, the CLIP-Grad., B/32
(N) matches the SemanticNav-ZSON model on HABITAT
(MP3D) SPL: 4.9 for CoW v.s. 4.8 for the competitor,
while improving over EmbCLIP-ZSON ROBOTHOR by
15.6 percentage points. To contextualize this result, CoWs
train for 0 navigation steps, while SemanticNav-ZSON and
EmbCLIP-ZSON train in the target evaluation simulators
for 500M and 60M steps respectively.

HABITAT ROBOTHOR ROBOTHOR Nav.
CoW breeds (MP3D) (subset) (full) training

ID Loc. Arch. SPL SR SPL SR SPL SR steps

N CLIP-Grad. B/32 4.9 9.2 15.0 23.7 9.7 15.2 0N OWL B/32 3.7 7.4 20.8 32.5 16.9 26.7 0

EmbCLIP-ZSON [38] – – – 8.1 – 14.0⇤ 60M

SemanticNav-ZSON [46] 4.8 15.3 – – – – 500M

Table 4. Comparison to prior art on existing ZSON bench-
marks. CoWs are able to match or out-compete existing methods
that leverage millions of steps of navigation training in the evalu-
ation simulator. ⇤indicates a result from prior work that includes,
non-zero-shot evaluation. Specifically, only 1/4 of the evaluations
are zero-shot on ROBOTHOR (subset) and the remaining 3/4 on
categories seen during training.

The superior performance of SemanticNav-ZSON in
terms of MP3D SUCCESS indicates that there can be bene-
fits to in-domain learning. Future work may consider unify-
ing the benefits of CoW-like models and fine-tuned models.

7. Limitations and Conclusion

Limitations. While our evaluation of CoWs on HABI-
TAT, ROBOTHOR, and PASTURE is a step towards assess-
ing their performance in different domains, ultimately, real-
world performance matters most. Hence, the biggest lim-
itation of our work is the lack of large-scale, real-world
benchmarking—which is also missing in much of the re-
lated literature. Additionally, CoW inherents the meta-
limitations of the object localization and exploration meth-
ods considered. For example, object localizers require tun-
ing a confidence threshold to balance precision and recall.
Finally, we do not consider different agent embodiment or
continuous action spaces. This is a pertinent investigation
given recent findings of Pratt et al. [59] that agent morphol-
ogy can be a big determinant of downstream performance.
Conclusion. This paper introduces the PASTURE bench-
mark for language-driven zero-shot object navigation and
several CLIP on Wheels baselines, translating the successes
of existing zero-shot models to an embodied task. We view
CoW as an instance of using open-vocabulary models, with
text-based interfaces, to tackle robotics tasks in more flex-
ible settings. We hope that the baselines and the proposed
benchmark will spur the field to explore broader and more
powerful forms of zero-shot embodied AI.
Acknowledgement. We would like to thank Jessie Chapman,
Cheng Chi, Huy Ha, Zeyi Liu, Sachit Menon, and Sarah Pratt
for valuable feedback. This work was supported in part by NSF
CMMI-2037101, NSF IIS-2132519, and an Amazon Research
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Figure 6. Failure analysis for OWL, B/32 (N). Exploration and
object localization errors occur at similar ratios, with increased
localization failures in the presence of distractors.

Can CoW incorporate object priors? Examining Tab. 3,
we see that incorporating GPT-3.5 object-level priors im-
proves performance on both PASTURE uncommon objects
and ROBOTHOR. These initial results suggest positive
trends for incorporating outside knowledge into CoW. Fu-
ture work may consider more sophisticated methods for in-
jecting priors to steer navigation.
How do CoWs fail? We identify three high-level failure
modes. (1) Exploration fail: the target is never seen. (2)
Object localization fail: the target is seen but the localizer
never fires. (3) Planning fail: the target is seen and the
localizer fires, but planning fails due to inaccuracy in the
map representation (Sec. 4.2). Looking at Fig. 6, we notice
a large fraction of failures are due to exploration and object
localization. This suggests CoWs may continue to improve
as research in these fields progress. In Fig. 6 we also see
that in cases where distractors are present a higher fraction
of object localization failures occur, further suggesting that
open-vocabulary models currently struggle to make full use
of attribute prompts. See Appx. I for more failure analysis.

6.3. Comparison to Prior Art

We primarily evaluate CoWs in general L-ZSON set-
tings; however, we further evaluate CoWs on ZSON bench-
marks to establish them as a strong baseline for these tasks.
Recall, ZSON can be seen as a case of L-ZSON where only
object goals are specified (no attributes).

In Tab. 4, we see there exists a CoW that outperforms
the end-to-end baselines in all cases except SUCCESS on
HABITAT (MP3D). For instance, the CLIP-Grad., B/32
(N) matches the SemanticNav-ZSON model on HABITAT
(MP3D) SPL: 4.9 for CoW v.s. 4.8 for the competitor,
while improving over EmbCLIP-ZSON ROBOTHOR by
15.6 percentage points. To contextualize this result, CoWs
train for 0 navigation steps, while SemanticNav-ZSON and
EmbCLIP-ZSON train in the target evaluation simulators
for 500M and 60M steps respectively.

HABITAT ROBOTHOR ROBOTHOR Nav.
CoW breeds (MP3D) (subset) (full) training

ID Loc. Arch. SPL SR SPL SR SPL SR steps

N CLIP-Grad. B/32 4.9 9.2 15.0 23.7 9.7 15.2 0N OWL B/32 3.7 7.4 20.8 32.5 16.9 26.7 0

EmbCLIP-ZSON [38] – – – 8.1 – 14.0⇤ 60M

SemanticNav-ZSON [46] 4.8 15.3 – – – – 500M

Table 4. Comparison to prior art on existing ZSON bench-
marks. CoWs are able to match or out-compete existing methods
that leverage millions of steps of navigation training in the evalu-
ation simulator. ⇤indicates a result from prior work that includes,
non-zero-shot evaluation. Specifically, only 1/4 of the evaluations
are zero-shot on ROBOTHOR (subset) and the remaining 3/4 on
categories seen during training.

The superior performance of SemanticNav-ZSON in
terms of MP3D SUCCESS indicates that there can be bene-
fits to in-domain learning. Future work may consider unify-
ing the benefits of CoW-like models and fine-tuned models.

7. Limitations and Conclusion

Limitations. While our evaluation of CoWs on HABI-
TAT, ROBOTHOR, and PASTURE is a step towards assess-
ing their performance in different domains, ultimately, real-
world performance matters most. Hence, the biggest lim-
itation of our work is the lack of large-scale, real-world
benchmarking—which is also missing in much of the re-
lated literature. Additionally, CoW inherents the meta-
limitations of the object localization and exploration meth-
ods considered. For example, object localizers require tun-
ing a confidence threshold to balance precision and recall.
Finally, we do not consider different agent embodiment or
continuous action spaces. This is a pertinent investigation
given recent findings of Pratt et al. [59] that agent morphol-
ogy can be a big determinant of downstream performance.
Conclusion. This paper introduces the PASTURE bench-
mark for language-driven zero-shot object navigation and
several CLIP on Wheels baselines, translating the successes
of existing zero-shot models to an embodied task. We view
CoW as an instance of using open-vocabulary models, with
text-based interfaces, to tackle robotics tasks in more flex-
ible settings. We hope that the baselines and the proposed
benchmark will spur the field to explore broader and more
powerful forms of zero-shot embodied AI.
Acknowledgement. We would like to thank Jessie Chapman,
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for valuable feedback. This work was supported in part by NSF
CMMI-2037101, NSF IIS-2132519, and an Amazon Research
Award. SYG is supported by a NSF Graduate Research Fellow-
ship. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the sponsors.

8

CoWs may 
improve with 
better perception 
and exploration 
strategies.

0 10 20 30
RoboTHOR Success

0

5

10

15

20

25

30

P
a
st

u
r
e
:

S
in

gl
e

in
st

an
ce

vi
si
bl

e
S
u
c
c
e
ss

(a) Attribute object navigation
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(b) Attribute object navigation
with distractors
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(c) Hidden object navigation
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(d) Hidden object navigation
with distractors

y = x

Hidden object
descriptions on task y

Figure 5. PASTURE object navigation with descriptions. In general object navigation with descriptions is more challenging than the
ROBOTHOR object navigation task, as indicated by trend lines lying below the y = x line. (a) Appearance descriptions are more helpful
than spatial descriptions. (b) Performance further drops when distractor objects are introduced to the environment. However, CoWs are still
able to make better use of appearance description than spatial descriptions. (c) Models in the lower success regime (<15% ROBOTHOR
SUCCESS) perform comparably on finding hidden objects. However, this trend plateaus for higher success models. (d) Trends are similar
when distractor objects are introduced for hidden object navigation.

plore this hypothesis in Appx. E by visualizing CLIP re-
trieval results on LAION-5B [68] for the uncommon ob-
ject categories. The relatively high performance on uncom-
mon objects speaks to the flexibility of CoW baselines and
their ability to inherit desirable properties from the open-
vocabulary models that they are constructed from.
Can CoWs utilize appearance and spatial descriptions?
Looking at Fig. 5 (a) we see that neither appearance nor spa-
tial descriptions improve CoW performance compared to
their ROBOTHOR baseline performance (i.e., most points
lie under the y = x line). However, CoW is able to take
better advantage of appearance descriptions than spatial de-
scriptions. These results motivate future investigation on
open-vocabulary object localization with a greater focus on
textual object attributes.
Can CoWs find visible objects in the presence of distrac-
tors? In Fig. 5 (b) we see that CoWs experience perfor-
mance degradation when compared to Fig. 5 (a). We con-
clude that appearance and spatial attributes added as lan-
guage input are not sufficient to deal with the complexity of
distractors given current open-vocabulary models.
Can CoWs find hidden objects? Looking at Fig. 5 (c) we
notice that models in the lower success regime (less than
15% SUCCESS on ROBOTHOR) are able to find hidden ob-
jects at about the same rate as ROBOTHOR objects (i.e.,
they lie on the y = x line). OWL models in the higher suc-
cess regime (>15%) do not continue this trend; however,
they do achieve higher absolute accuracy as seen in Tab. 1.
Dealing with occlusion is a longstanding problem in com-
puter vision, and these results provide a foundation upon
which future hidden object navigation work can improve.
Can CoWs find hidden objects in the presence of dis-
tractors? Comparing Figs. 5 (c) and (d), we notice similar
trends lines, with the best models performing worse with
distractors. This suggests that distractors are less of a con-

CoW breeds PASTURE (Avg.) ROBOTHOR
ID Loc. Arch. Exp. Strategy SPL SR SPL SR

N OWL B/32 ROBOTHOR learn. 10.2 17.3 13.1 20.9N OWL B/32 HABITAT learn. 8.6 19.4 9.8 20.4N OWL B/32 FBE 12.6 21.1 16.9 26.7

Table 2. Exploration ablation. For a fixed object localizer
(OWL-ViT B/32 with post processing), we ablate over different
choices of exploration policy: the FBE heuristic, agents trained in
ROBOTHOR, and HABITAT (MP3D). We find that FBE outper-
forms learnable alternatives on both PASTURE and ROBOTHOR.
HABITAT learnable model perform worst, but are not trained on
any PASTURE or ROBOTHOR data.

CoW breeds PASTURE Uncom. ROBOTHOR
ID Loc. Arch. Obj. Prior SPL SR SPL SR

N OWL B/32 None 20.5 32.8 16.8 26.7N OWL B/32 GPT-3.5 22.2 36.9 17.0 27.5

Table 3. CoW with GPT-3.5 priors. Leveraging GPT-3.5, we
generate priors for objects (e.g., apples are likely to be in dining
room scenes). Instead of directly searching for the target object,
CoW first searches for the scenes, which boosts performance.

cern in the case of hidden objects than for visible object
targets. In light of the fact that detection methods generally
work better on larger objects, we hypothesize this effect is
because distractor objects are smaller (e.g., apples, vases,
basketballs) than objects used to conceal target categories
(e.g., beds, sofas, etc.).

What exploration method performs best? We ablate
the decision to use FBE for most experiments by fixing an
object localizer (OWL, B/32 (N)) and comparing against
ROBOTHOR learnable exploration and HABITAT learnable
exploration in Tab. 2. We notice that FBE performs best in
all cases; however, learnable exploration still performs well
suggesting that these models do learn useful strategies for
the downstream tasks.
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Incorporating object and scene priors helps.

CoW baselines struggle to take advantage of spatial and 
appearance object attributes. Distractor objects hurt 

performance less when finding hidden objects.

CoWs on PASTURE: Baselines and Benchmarks
for Language-Driven Zero-Shot Object Navigation

Samir Yitzhak Gadre⇧ Mitchell Wortsman† Gabriel Ilharco† Ludwig Schmidt† Shuran Song⇧

Abstract

For robots to be generally useful, they must be able
to find arbitrary objects described by people (i.e., be
language-driven) even without expensive navigation train-
ing on in-domain data (i.e., perform zero-shot inference).
We explore these capabilities in a unified setting: language-
driven zero-shot object navigation (L-ZSON). Inspired by
the recent success of open-vocabulary models for image
classification, we investigate a straightforward framework,
CLIP on Wheels (CoW), to adapt open-vocabulary models
to this task without fine-tuning. To better evaluate L-ZSON,
we introduce the PASTURE benchmark, which considers
finding uncommon objects, objects described by spatial and
appearance attributes, and hidden objects described rel-
ative to visible objects. We conduct an in-depth empiri-
cal study by directly deploying 22 CoW baselines across
HABITAT, ROBOTHOR, and PASTURE. In total, we eval-
uate over 90k navigation episodes and find that (1) CoW
baselines often struggle to leverage language descriptions
but are proficient at finding uncommon objects. (2) A sim-
ple CoW, with CLIP-based object localization and classical
exploration—and no additional training—matches the nav-
igation efficiency of a state-of-the-art ZSON method trained
for 500M steps on HABITAT MP3D data. This same CoW
provides a 15.6 percentage point improvement in success
over a state-of-the-art ROBOTHOR ZSON model.1

1. Introduction
To be more widely applicable, robots should be

language-driven: able to deduce goals based on arbitrary
text input instead of being constrained to a fixed set of ob-
ject categories. While existing image classification, seman-
tic segmentation, and object navigation benchmarks like
ImageNet-1k [65], ImageNet-21k [22], MS-COCO [45],
LVIS [28], HABITAT [67], and ROBOTHOR [18] include a
vast array of everyday items, they do not capture all objects
that matter to people. For instance, a lost “toy airplane” may

⇧Columbia University, †University of Washington. Correspondence to
sy@cs.columbia.edu.

1For code, data, and videos, see cow.cs.columbia.edu/

(c) Finding hidden objects in the presence of distractors

correct apple ✅ 

correct mug ✅ 

Top-down visualization Egocentric Observations

(a) Finding uncommon objects

(b) Finding objects based on attributes in the presence of distractors

Sample tasks

“…llama wicker 
basket…”

“…tie-dye 
surfboard…”

goal ✅ goal ✅ 

distractor apple⛔

“…mug under the 
bed…”

“…small, green 
apple…”

“…apple on a 
coffee table near a 

laptop…”

distractor mug⛔

Figure 1. The PASTURE benchmark for L-ZSON. Text speci-
fies navigation goal objects. Agents do not train on these tasks,
making the evaluation protocol zero-shot. (a) Uncommon object
goals like “llama wicker basket”, not found in existing navigation
benchmarks. (b) Appearance, spatial descriptions, which are nec-
essary to find the correct object. (c) Hidden object descriptions,
which localize objects that are not visible.

become relevant in a kindergarten classroom, but this object
is not annotated in any of the aforementioned datasets.

In this paper, we study Language-driven zero-shot object
navigation (L-ZSON), a more challenging but also more ap-
plicable version of object navigation [5, 18, 67, 79, 89] and
ZSON [38,46] tasks. In L-ZSON, an agent must find an ob-
ject based on a description, which may contain different lev-
els of granularity (e.g., “toy airplane”, “toy airplane under
the bed”, or “wooden toy airplane”). L-ZSON encompasses
ZSON, which specifies only the target category [38, 46].
Since L-ZSON is “zero-shot”, we consider agents without
access to navigation training on the target objects or do-
mains. This reflects realistic application scenarios, where
the environment and object set may not be known a priori.

Performing L-ZSON in any environment with unstruc-
tured language input is challenging; however, recent ad-
vances in open-vocabulary models for image classifica-
tion [35, 58, 61], object detection [4, 21, 27, 36, 43, 47, 49,
62, 88], and semantic segmentation [3, 6, 15, 33, 36, 37, 86]
present a promising foundation. These models provide an
interface where one specifies—in text—the arbitrary ob-

1

4.3. Object Localization
Successful navigation depends on object localization:

the ability to tell if and where an object is in an image. Re-
gions of high object relevance, extracted from 2D images,
are projected to the depth-based map (Fig. 3 (b)) where they
serve as natural navigation targets. To determine if and
when a target is in an image, we consider the following ob-
ject localization modules, used in our experiments (Sec. 6).
For more details see Appx. C.
Adapting open-vocabulary classifiers. We experiment
with three strategies to turn CLIP [61] models into object
localizers. First, we utilize the CLIP text encoder to em-
bed k referring expressions, which specify regions where
the target object may appear in the image. For example,
“a plant in the top left of the image.” We then match the
language embeddings against a CLIP visual embedding for
the current observation. We compute similarity between the
image and text features to determine relevance scores over
the regions. Second, we discretize the image into k smaller
patches and obtain CLIP patch embeddings. We then con-
volve each patch embedding with a CLIP text embedding
for the target object. If the object is in a patch, the rele-
vance score for that patch should be high. Third, we modify
an interpretability method [13, 70] designed to extract ob-
ject relevancy from vision transformers (ViTs) [24]. Using
a target CLIP text embedding and gradient information ac-
cumulated through the CLIP vision encoder, we construct
a relevance map over input pixels, which qualitatively seg-
ments the target when it is in view.
Adapting open-vocabulary detectors and segmentors. In
addition to CLIP-based methods, we consider two addi-
tional open-vocabulary models for object localization. First,
the MDETR segmentation model [36], which extends the
DETR detector [8] to take arbitrary text and images as in-
put and output box detections. The base model is fine-tuned
on PhraseCut [80], a dataset of paired masks and attribute
descriptions, to support segmentation. Second, we consider
the OWL-ViT detector [49], which uses a set prediction
fine-tuning recipe to turn CLIP-like models into object de-
tectors. We use this MDETR and OWL-ViT models to di-
rectly query images for targets.
Post-processing. The aforementioned models give con-
tinuous valued predictions. However, we are interested
in binary masks giving if and where objects are in im-
ages. Hence, we threshold predictions for each model (see
Appx. C for details). We further investigate two strategies
for using the masks downstream: (1) using the entire mask
or (2) using the center pixel. The second strategy is reason-
able because only part of an object needs to be detected for
successful navigation.
Target driven planning. Recall, CoWs have depth sensors.
We back-project object relevance from 2D images into the
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“graphics card”

Figure 4. Uncommon objects in PASTURE.

depth-based map (Sec. 4.1). We keep only the max rele-
vance for each map cell (Fig. 3 (b)). CoWs can then plan to
high relevance areas in the map. See Appx. D for additional
method visualization.
Incorporating object priors. Since CoW does not train
or fine-tune on navigation datasets, we investigate alterna-
tive approaches to inject object-level priors into the model.
For each target object, we prompt GPT-3.5 [55] to generate
rooms where the target objects are likely to be found. For
example, GPT-3.5 states that apples are likely to be found in
“kitchen” or “dining room” scenes. Following this prior, a
GPT-3.5 enabled CoW first uses its object localization mod-
ule to localize a kitchen or a dining room, and then looks for
an apple. This straightforward extension, demonstrates how
outside information can be incorporated into CoW.

5. The PASTURE Benchmark
To evaluate CoW baselines and future methods on L-

ZSON, we introduce the PASTURE evaluation benchmark.
PASTURE builds on ROBOTHOR validation scenes, which
have parallel environments in the real-world. We tar-
get ROBOTHOR to facilitate future real-world benchmark-
ing. PASTURE probes for seven capabilities explained in
Sec. 5.1. We provide dataset statistics in Sec. 5.2.

5.1. PASTURE Tasks
PASTURE evaluates seven core L-ZSON capabilities.

Uncommon objects. Traditional benchmarks (e.g.,
ROBOTHOR and HABITAT MP3D) evaluate agents on
common object categories like TVs; however, given the rich
diversity of objects in homes, we would like to understand
navigation performance on uncommon objects. Hence we
add 12 new objects to each room. We use names shown in
Fig. 4 as instance labels, which are minimal descriptions to
identify each object. Some identifiers refer to text in im-
ages (e.g., “whiteboard saying CVPR”) or to appearance at-
tributes (e.g., “wooden toy airplane”). Other objects are less
common in North America, like “maté”, which is a popular
Argentinian drink.
Appearance descriptions. To evaluate if baselines can take
advantage of visual attributes, we introduce descriptions
of the form: “{size}, {color}, {material} {object}”. For
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