

Exploring the Relationship between Architectural Design and Adversarially Robust Generalization

Aishan Liu¹, Shiyu Tang¹, Siyuan Liang², Ruihao Gong^{1,6}, Boxi Wu³, Xianglong Liu^{1,4,5[®]}, Dacheng Tao⁷ ¹Beihang University, ²Chinese Academy of Sciences, ³Zhejiang University, ⁴Zhongguancun Laboratory, ⁵Hefei Comprehensive National Science Center, ⁶SenseTime, ⁷JD Explore Academy

01. Backgrounds

- 02.
 - Contribution
- 03.
- Architectural Design and Robust Generalization
- **04.** Pc

Potential Pathways

• Connection between Network Structure with Generalization ?

- Adversarially Robust
 - Generalization ?

01 Backgrounds

02. Contribution

- 03.
- Architectural Design and Robust Generalization
- **04.** P

Potential Pathways

Contribution

- We, for the first time, systematically studied 20 adversarially-trained architectures against multiple attacks and revealed the close relationship between architectural design and robust generalization.
- We theoretically revealed that higher weight sparsity contributes to the better adversarially robust generalization of Transformers, which can often be achieved by attention blocks.
- We provide more detailed analyses of the generalizability from several viewpoints and discuss potential pathways that may improve architecture robustness.

- **01** Backgrounds
- 02.
- Contribution

03. Architectural Design and Robust Generalization

04.

Potential Pathways

Empirical Evaluation

- Datasets: CIFAR-10 and ImageNette
- Architectures: CNN with convolutions, ViT with attentions, hybrids with both attention/convolutions, and newly designed atten_x0002_tions), aiming to find the influential parts.
- Training settings: Standard training (vanilla training) and PGD- l_{∞} adversarial training
- Evaluation strategy: $W(f_{\theta}, \mathbb{A}) = \frac{1}{n} \sum_{i=1}^{n} \left\{ \min_{A \in \mathbb{A}} \mathbf{1} \left[f_{\theta} \left(\mathcal{A} \left(\boldsymbol{x}_{i} \right) \right) = \boldsymbol{y}_{i} \right] \right\}$

			PGD- ℓ_{∞} Adversarial Training					
Architecture	Params (M)	Vanilla Acc	Clean Acc	PGD- ℓ_∞	AA- ℓ_{∞}	PGD- ℓ_2	$\mathbf{PGD-}\ell_1$	Worst-case Acc
PVTv2	12.40	88.34	75.99	46.48	38.18	35.77	46.14	33.54
CoAtNet	16.99	90.73	77.73	48.27	39.85	33.80	42.30	32.17
ViT	9.78	86.73	78.76	46.02	38.00	30.86	39.27	29.24
CPVT	9.49	90.34	78.57	45.02	36.73	30.15	39.22	28.47
ViTAE	23.18	88.24	75.42	40.53	33.22	29.67	40.02	28.13
MLP-Mixer	0.68	83.43	62.86	38.93	31.81	29.27	36.50	27.42
PoolFormer	11.39	89.26	73.66	46.33	38.93	28.84	34.32	27.36
CCT	3.76	92.27	81.23	49.21	40.97	28.29	34.59	26.82
VGG	14.72	94.01	84.30	50.87	41.66	26.78	31.48	25.32
Swin Transformer	27.42	91.58	80.44	48.61	41.31	26.58	30.47	25.04
LeViT	6.67	89.01	77.10	47.16	39.87	26.28	29.58	25.04
MobileViT	5.00	91.47	77.52	49.51	41.50	26.96	29.35	24.41
BoTNet	18.82	94.16	80.76	51.29	42.95	25.84	27.38	23.15
WideResNet	55.85	96.47	89.54	55.17	44.13	22.55	23.68	20.88
DenseNet	1.12	94.42	83.23	53.06	44.02	22.55	21.87	19.48
PreActResNet	23.50	95.86	87.96	54.85	45.81	18.60	16.46	15.11
CeiT	5.56	85.24	71.55	36.20	28.02	15.31	16.77	14.35
ResNet	23.52	95.60	87.92	54.18	45.40	17.52	15.90	14.32
ResNeXt	9.12	95.64	87.12	51.51	42.66	15.07	13.64	12.18
CvT	19.54	87.81	73.76	41.36	33.67	12.75	9.25	8.76

Overall understanding: weight sparsity

• Rademacher complexity

$$R_{\mathcal{S}}(\mathcal{F}) = \frac{1}{n} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \sigma_{i} f(\boldsymbol{x}_{i}) \right]$$

• Lemma 1

Attention contributes to sparseness

Theorem 1. Suppose the Transformer network function $\mathcal{F} = \{f_{\boldsymbol{w}}(x) : \boldsymbol{W} = (\boldsymbol{A}_1, \boldsymbol{W}_1), \| \boldsymbol{A}_1 \|_p \leq s_1, \| \boldsymbol{W}_1 \|_p \leq s_2, \| \boldsymbol{A}_1 \|_1 \leq b_1, \| \boldsymbol{W}_{1,1} \|_1 \leq b_2 \}. \forall \gamma > 0, with probabil$ $ity at least <math>1 - \delta$, we have $\forall f_{\boldsymbol{w}} \in \mathcal{F}$,

$$\mathbb{P}_{(\boldsymbol{x},\boldsymbol{y})\sim\mathcal{S}}\{\exists \boldsymbol{\delta} \in \mathbb{B}(\epsilon), \quad \text{s.t.} \quad \boldsymbol{y} \neq \arg\max[f_{\boldsymbol{w}}(\boldsymbol{x}+\boldsymbol{\delta})]_{\boldsymbol{y}'} \\
\leq \frac{1}{n} \sum_{i=1}^{n} E_{i} + \frac{1}{\gamma} \left(\frac{4}{n^{3/2}} + \frac{60\log(n)\log(2d_{\max})}{n}s_{1}s_{2}C\right) \\
+ \frac{2\epsilon b_{1}b_{2}}{\gamma\sqrt{n}} + 3\sqrt{\frac{\log(2/p)}{2n}},$$
(6)

where $\boldsymbol{w}_{1,k}$ denotes the k-th column of W_1 , $C = \left(\left(\frac{b_1}{s_1} \right)_{2/3} + \left(\frac{b_2}{s_2} \right)_{2/3} \right)_{3/2} \parallel \boldsymbol{X} \parallel_F, E_i = \mathbb{1}([f_{\boldsymbol{w}}(\boldsymbol{x}_i)]_{\boldsymbol{y}_i} + \frac{\epsilon}{2} \max_{k \in [K], z = \pm 1} \boldsymbol{P} \succeq 0, diag \boldsymbol{P} \le 1 \langle zQ(\boldsymbol{w}_{1,k}, \boldsymbol{A}_1), \boldsymbol{P} \rangle),$ and $Q(\boldsymbol{w}_{1,k}, \boldsymbol{A}_1) = \begin{bmatrix} 0 & 0 & \mathbf{1}^\top \boldsymbol{A}_1^\top \boldsymbol{b} \\ 0 & 0 & \boldsymbol{A}_1^\top \boldsymbol{b} \\ \boldsymbol{b}^\top \boldsymbol{A}_1 \mathbf{1} & \boldsymbol{b}^\top \boldsymbol{A}_1 & 0 \end{bmatrix}.$ At this time, there is $\boldsymbol{b} = \operatorname{diag}(\boldsymbol{w}_{1,k}).$

- 01. Backgrounds
- 02.
 - Contribution
- 03.
- Architectural Design and Robust
- Generalization
- **04.** Potential Pathways

Potential Pathways

• Imposing l_1 regularization for sparsity.

• Hybrid architecture with increased sparsity.

			PGD- ℓ_{∞} Adversarial Training					
Architecture	Params (M)	Vanilla	Clean	PGD- ℓ_∞	AA- ℓ_∞	PGD- ℓ_2	PGD- ℓ_1	Worst-case
CoAtNet-CTTT	17.36	90.83	74.25	45.70	37.27	31.95	40.15	30.30
CoAtNet-CTTC	17.02	91.13	77.84	46.61	37.89	31.61	39.88	29.96
CoAtNet-CTCC	16.38	90.69	78.71	42.36	34.56	27.84	37.19	26.69
CoAtNet-CCCC	16.02	91.41	79.14	43.71	35.59	29.03	38.68	27.64

• Patch size as receptive fields.

			PGD- ℓ_{∞} Adversarial Training					
Architecture	Patch Size	Vanilla	Clean	PGD- ℓ_∞	AA- ℓ_∞	PGD- ℓ_2	PGD- ℓ_1	Worst-case
PVTv2	p = 4	88.34	75.99	46.48	38.18	35.77	46.14	33.54
	p = 2	93.03	83.80	52.34	44.04	32.49	39.63	31.16
	p = 1	94.60	87.50	54.59	46.58	23.47	24.76	21.10
ViT	p = 8	82.30	72.39	42.77	35.04	32.74	42.61	30.72
	p = 4	86.73	78.76	46.02	38.00	30.86	39.27	29.24
	p=2	85.99	77.37	45.45	37.95	25.36	30.15	23.78

• Considering generalization on common corruptions.

	CIFAR-10 Dataset								
	Vanilla Training		PGD- ℓ_∞ Training						
Architecture	Vanilla Acc	CIFAR-C Acc	Clean Acc	CIFAR-C Acc					
WidePesNet	06.47	83.01	80.54	<u><u>81</u> <u>/</u>8</u>	Swin Transformer	91.58	77.61	80.44	71.36
D	90.47	03.91	09.04	01.40	CPVT	90.34	79.66	78.57	70.74
ResNet	95.60	81.20	87.92	79.24	LeViT	89.01	78.31	77.10	70.48
PreActResNet	95.86	82.18	87.96	78.99	CoAtNet	90.73	79.91	77.73	70.27
ResNeXt	95.64	80.43	87.12	77.76	MobileViT	91.47	80.48	77.52	70.15
VGG	94.01	81.22	84.30	75.85	PVTv2	88.34	79.84	75.99	69.12
DenseNet	94.42	79.73	83.23	74.60	ViTAE	88.24	75.86	75.42	67.58
BoTNet	94.16	81.04	80.76	72.72	PoolFormer	89.26	77.57	73.66	66.45
CCT	92.27	78.99	81.23	72.56	CVT	87.81	75.10	73.76	66.28
ViT	86.73	77.06	78.76	71.87	CeiT	85.24	73.99	71.55	65.07
	I				MLP-Mixer	83.43	70.70	62.86	57.09

Thank You!

Email

liuaishan@buaa.edu.cn